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IEinf�uhrungIm Jahr 2004 wurden die drei theoretis
hen Physiker David J. Gross, H. David Politzerund Frank Wil
zek f�ur ihre bahnbre
henden Arbeiten auf dem Gebiet der Quanten-feldtheorie mit dem Nobelpreis f�ur Physik ausgezei
hnet. Sie konnten zeigen, dassdie Quanten
hromodynamik (QCD) als ni
ht abels
he Ei
htheorie eine Eigens
haftbesitzt, die als asymptotis
he Freiheit bezei
hnet wird. Damit war die Eignung derQCD zu Bes
hreibung der Starken We
hselwirkungen zwis
hen Quarks erwiesen. Die-ses Resultat gab der Interpretation der Quarks als physikalis
h reale Teil
hen eine�uberzeugende Grundlage. Seitdem konnten viele Aspekte der Dynamik der StarkenWe
hselwirkung mit Hilfe der QCD bere
hnet werden. Allerdings entziehen si
h vie-le Eigens
haften der Quark-Quark-We
hselwirkung bis heute einer Bere
hnung ausgrundlegenden Prinzipien. Dies gilt insbesondere f�ur die Fragmentierung s
hwererQuarks in Hadronen und deren Produktion in Hadronenkollisionen. Gerade diese Pro-zesse sind aber von gr�o�ter Bedeutung f�ur die Verbindung von Theorie und Experi-ment, da si
h freie Quarks der Beoba
htung entziehen. Es ist daher wi
htig, Methodenzu entwi
keln, die die Eigens
haften der Produktion s
hwerer Quarks in Hadronen-kollisionen experimentell zug�angli
h ma
hen. Die vorliegende Arbeit bes
h�aftigt si
hmit der Entwi
klung dieser experimentellen Methoden und der Su
he na
h korrelier-ter Produktion von Charm-Anti
harm Quarkpaaren in den vom CDF 2-Experimentgenommenen Daten. Zu den behandelten experimentellen Methoden geh�ort insbeson-dere eine eÆziente Software zur Rekonstruktion geladener Teil
henspuren. Der Be-gri� EÆzienz hat hier zwei Bedeutungen. Zum einen bezei
hnet er ein Ma� f�ur dieF�ahigkeit Dinge zu �nden, die tats�a
hli
h vorhanden sind, und zum Anderen meinter EÆzienz im Sinne von angemessenem Verbrau
h von Re
henresour
en. Der Auf-wand f�ur die Umsetzung eÆzienter Rekonstruktions-Software wird bei der Auslegungeines Experiments h�au�g unters
h�atzt. Oftmals sind kleine �Anderungen in der Kon-struktion des Detektors, wie z.B. die �Anderung des Ans
hlusss
hemas in einer La-ge des Silizium-Vertex-Detektors, f�ur erhebli
he Verz�ogerungen auf dem Weg zu ei-ner eÆzienten Rekonstruktions-Software verantwortli
h. Auf der anderen Seite ist esunm�ogli
h, alle zuk�unftigen Folgen eines { notwendigerweise { komplizierten Desi-gns vorherzusehen, handle es si
h um Hardware oder Software. Dies gilt insbesonde-re f�ur das Spurrekonstruktionssystem bei CDF 2. Es erfordert daher viel Erfahrungund zahllose Entwi
klungszyklen, mit einer Rekonstruktions-Software aufwarten zuk�onnen, die es erlaubt hunderte von Millionen von Ereignissen zu analysieren. Folg-li
h wurden gro�e Anstrengungen unternommen, um eÆziente Spurrekonstruktions-und Spur-Anpassungs-Software zu entwi
keln. Diese resultierten in einer ho
h genau-en und eÆzienten Umsetzung, die die Grundlage aller auf Spuren geladener Teil
hengegr�undeten Analysen in der CDF 2-Kollaboration ist. Viele der te
hnis
hen Aspekte



IIdieser Umsetzung werden in der vorliegenden Arbeit diskutiert, wobei ein besondererS
hwerpunkt auf die ents
heidende Bedeutung einer akkuraten Geometriebes
hreibunggelegt wird. Erst die Verf�ugbarkeit dieser m�a
htigen experimentellen Werkzeuge hates, erstmals an einem Hadronenbes
hleuniger, erm�ogli
ht, Evidenz f�ur die korrelierteProduktion von D0- �D0-Paaren zu etablieren.Quellen Korrelierter Charm-Anti
harm PaareDie experimentelle Signatur f�ur korrelierte Charm-Produktion ist das Auftreten vonzwei Hadronen, von denen eines ein Charm Quark (
) und das andere dessen Antiteil-
hen (�
) enth�alt, in einem Kollisionsereignis. In der Praxis muss diese De�nition weitereinges
hr�ankt werden, da ni
ht alle Endzust�ande, in die die Hadronen zerfallen k�onnen,glei
herma�en experimentell zug�angli
h sind. Die Untersu
hungen in dieser Arbeit be-s
hr�anken si
h daher auf die Mesonen D0, D+ und D�+ die jeweils ein Charm-Quarkenthalten. Weiterhin werden nur die Endzust�ande D0 ! K��+, D+ ! K��+�+ undD�+ ! D0(! K��+)�+s untersu
ht1. Auf der Ebene der Quarks sind also 
�
-Paare dieQuellen sol
h korrelierter Paare von Mesonen. Die 
�
-Paare k�onnen entweder direkt inder Proton-Antiproton-Kollision erzeugt werden oder in Zerf�allen entstehen. Die Pro-duktionsprozesse f�uhrender Ordnung O(�2s) sind q + �q ! Q + �Q (Quark-Antiquark-Verni
htung) und g + g ! Q + �Q (Gluonenfusion). Die entspre
henden Feynman-diagramme zeigt Abb. 1. In Proton-Antiproton-Kollisionen bei ps = 1:96 TeV �uber-wiegt der Beitrag der Gluonenfusion. Insbesondere in Produktion von Charm-Quarksk�onnen Prozesse der Ordnung O(�3s) einen wesentli
hen Beitrag zum Gesamtwirkungs-quers
hnitt liefern. Dies sind zum einen Prozesse in denen ein weiteres virtuelles oderreelles Gluon zu den Diagrammen in Abb. 1 hinzugef�ugt wird. Aufgrund der vielenM�ogli
hkeiten ein Gluon anzuh�angen gibt es eine gro�e Zahl sol
her Diagramme. Alldiesen Produktionsme
hanismen ist gemein, dass die 
�
-Paare mit im wesentli
hen ent-gegengesetzt geri
hteten Impulsen erzeugt werden. Dies unters
heidet sie von weiterenProzessen h�oherer Ordnung. Der Wirkungsquers
hnitt des Prozesses gg ! gg ist umeinen Faktor hundert gr�o�er als der des Prozesses gg ! Q �Q. dadur
h ist es m�ogli
h,dass gg! g(! Q �Q)g Prozesse, die formal von der Ordnung O(�3s) sind, einen �ahnli
hgro�en Beitrag liefern, wie die Gluonenfusion f�uhrender Ordnung. Zu diesen Prozes-sen geh�oren die Flavour-Anregung, bei der ein virtuelles s
hweres Quark in einem derkollidierenden Hadronen dur
h Streuung an einem Parton des anderen Hadrons aufdie Massens
hale gehoben wird, und Gluonen-Splitting Prozesse (g ! Q �Q), in denenkein s
hweres Quark an der Streuung beteiligt ist. Abbildung 2 zeigt die entspre-1Wenn ni
ht ausdr�u
kli
h anders gekennzei
hnet, verstehen si
h hier und im folgenden die la-dungskonjugierten Zust�ande als einges
hlossen.
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Abbildung 1: Feynmandiagramme zur 
�
-Produktion inf�uhrender Ordnung O(�2s).
henden Feynmandiagramme. Die Zuordnung des mittleren Diagramms in Abb. 2 istni
ht ganz eindeutig. Gew�ohnli
h re
hnet man es dem Gluonen-Splitting zu, da keins
hweres Quark an der harten Streuung beteiligt ist. Die relativen Impulsri
htungender so produzierten s
hweren Quarks unters
heiden von denen im Fall von Quark-Antiquark-Verni
htung und Gluonen-Fusion dadur
h, dass es einen erhebli
hen Anteilvon 
�
-Paaren mit nahezu glei
hgeri
hteten Impulsen gibt. Dies erlaubt es, aus derWinkelverteilung korrelierter Paare von Mesonen R�u
ks
hl�usse auf die Produktions-me
hanismen zu ziehen. Zus�atzli
h zur direkten Produktion in Proton-Antiproton-Kollisionen k�onnen korrelierte 
�
-Paare au
h in Zerf�allen s
hwerer Teil
hen entstehen.Insbesondere wenn es si
h dabei um langlebige Teil
hen handelt, kann dies ebenfalls zuPaaren von Mesonen mit glei
hgeri
hteten Impulsen f�uhren. Diese unters
heiden si
hallerdings dur
h ihre Zerfallsl�angenverteilung von Paaren, die aus der direkten Pro-duktion stammen. Die meisten Fragen, die hier aufgeworfen werden, k�onnen in der vor-liegenden Arbeit ni
ht behandelt werden. Die Bedeutung dieser Fragen unterstrei
htaber einmal mehr die Notwendigkeit der Entwi
klung experimenteller Methoden, dieihre Beantwortung erst erm�ogli
hen.
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Abbildung 2: Feynmandiagramme zur 
�
-Produktiondur
h Flavour-Anregung und Gluonen-Splitting.



IVExperimenteller AufbauDie in dieser Arbeit untersu
hten Daten wurden vom CDF 2 Experiment am Tevat-ron Bes
hleuniger genommen. Das Tevatron ist ein symmetris
her Proton-Antiproton-Bes
hleuniger mit einer S
hwerpunktsenergie von ps = 1:96 TeV. Es be�ndet si
h amFermi National A

elerator Laboratory (Fermilab) in den USA. Der Aufbau des CDF 2Detektors weist die f�ur Detektoren an Bes
hleunigern typis
he Zylindersymmetrie auf.Abbildung 3 zeigt einen Quers
hnitt dur
h den Detektor. Nah am We
hselwirkungs-punkt be�ndet si
h ein Silizium-Vertex-Detektor, der von einer Spurkammer umgebenist. Dieses System zur Rekonstruktion geladener Teil
henspuren be�ndet si
h innerhalbeines supraleitenden Solenoid-Magneten, der ein nahezu homogenes Feld der St�arke1.4 T erzeugt. Dieses Magnetfeld kr�ummt die Bahnen geladener Teil
hen und erlaubtso die Messung ihres Transversalimpules. Direkt innerhalb des Magneten ist ein Sy-stem zur Flugzeitmessung montiert, wel
hes, in Kombination mit der Impulsmessung,der Teil
henidenti�kation dient. Au�erhalb des Magneten be�nden si
h hadronis
heund elektromagnetis
he Kalorimeter. Ganz au�en s
hlie�li
h be�nden Detektoren zumNa
hweis von Myonen, der einzigen Teil
hen, die mit gro�er Wahrs
heinli
hkeit dasgesamte Detektormaterial dur
hqueren. Die extrem hohe Kollisionsrate am Tevatron

Abbildung 3: Der CDF 2 Detektor.



Vma
ht es unm�ogli
h, alle Ereignisse aufzunehmen. Daher verf�ugt das CDF 2 Expe-riment �uber ein aufw�andiges System von Ereignis�ltern (Trigger), die nur die phy-sikalis
h interessanten Ereignisse ausw�ahlen. Der bemerkenswerteste, und f�ur dieseArbeit wi
htigste unter diesen Filtern ist der so genannte Zweispur-Trigger. Mittelseiner ausgekl�ugelten Mustererkennung im Silizium-Vertex-Detektor w�ahlt dieser Fil-ter Ereignisse aus, die mit hoher Wahrs
heinli
hkeit langlebige Teil
hen enthalten undrei
hert damit Zerf�alle langlebiger Teil
hen in vollst�andig hadronis
he Endzust�andean. Obwohl der Filter urspr�ungli
h f�ur die Anrei
herung von hadronis
h zerfallendenB-Mesonen vorgesehen war, sind dies insbesondere au
h dieD-Mesonen Zerf�alle, die indieser Arbeit untersu
ht werden. Bis zum November 2004 hat das CDF 2-Experimentallein mit diesem Ereignis�lter 270.103.586 Ereignisse { dies entspri
ht � 481pb�1integrierter Luminosit�at { aufgenommen. Nur mit �au�erst stabilen und eÆzienten Re-konstruktionsalgorithmen ist es m�ogli
h, aus diesem riesigen Datensatz klare Signalehadronis
her Zerf�alle mit kleinen Verzweigungsverh�altnissen zu gewinnen.Die Rekonstruktion von Spuren Geladener Teil
henDie eÆziente und genaue Rekonstruktion der Spuren geladener Teil
hen ist eine we-sentli
he Grundlage vieler Analysen in der CDF 2-Kollaboration, und insbesondereder in dieser Arbeit vorgestellten. Aus diesem Grund, und da der Autor wesentli
heBeitr�age zu deren Umsetzung geleistet hat, wird die Spurrekonstruktion in dieser Ar-beit in einiger Ausf�uhrli
hkeit behandelt. In dieser Zusammenfassung kann nur einekleine Auswahl der wesentli
hen Aspekte diskutiert werden. Die Rekonstruktion ge-ladener Teil
henspuren �ndet in zwei Phasen statt. Zun�a
hst m�ussen die zahlrei
henMessungen in der Spurkammer und im Silizium-Vertex-Detektor Spurhypothesen zu-geordnet werden. Da die Di
hte der Messungen um so geringer ist, je weiter entferntvom prim�aren We
hselwirkungspunkt sie genommen werden, beginnt dieser Prozessin der Spurkammer. Dort gefundene Spuren geladener Teil
hen werden dann in denSilizium-Vertex-Detektor extrapoliert, um dort weitere Messungen aufzunehmen. Diesverbessert insbesondere die Ortsau
�osung nahe demWe
hselwirkungspunkt. Die Spur-kammer de
kt allerdings nur einen Bru
hteil des Raumwinkels ab. Der Silizium-Vertex-Detektor weist eine h�ohere Abde
kung auf. Aus diesem Grund su
ht ein spezieller,von der Spurkammer unabh�angiger, Algorithmus na
h Spuren im Silizium-Vertex-Detektor. Dies erlaubt das AuÆnden von Spuren in Raumwinkelberei
hen, die ni
htvon der Spurkammer abgede
kt werden, sowie sol
hen, deren Transversalimpuls ni
htausrei
ht die Spurkammer vollst�andig zu dur
hqueren. Aufgrund der hohen Teil
hen-di
hte nahe dem We
hselwirkungspunkt, weisen die so gefundenen Spuren allerdingserhebli
he Unreinheiten auf. Diesem Umstand kann nur mit zus�atzli
her Information



VIabgeholfen werden. Dies wird errei
ht, indem die im Silizium-Vertex-Detektor gefun-denen Spuren wiederrum in die Spurkammer extrapoliert werden, um dort weitereMesspunkte aufzunehmen. Dies ist nat�urli
h nur m�ogli
h, wenn die Spuren in den Ak-zeptanzberei
h der Spurkammer fallen. Wenn dies der Fall ist, erh�oht si
h die Qualit�atder Spuren dadur
h allerdings betr�a
htli
h. Die praktis
he Umsetzung dieser Vorge-hensweise wird dur
h die extrem hohe Teil
hendi
hte in Hadronenkollisionen erhebli
hers
hwert. Um diese hohe Kombinatorik in angemessener Zeit abarbeiten zu k�onnen,ist eine ho
h eÆziente Umsetzung der Extrapolationsroutinen unerl�assli
h. Diese Auf-gabe �ubernimmt ein auf extrem s
hnelle Re
henleistung ausgeri
hteter Kalman-Fitter,der au
h in der zweiten Phase der Spurrekonstruktion von gro�er Bedeutung ist. Indieser zweiten Phase werden die Spurparameter ohne �Anderung der aufgenommenenMessungen neu bestimmt. Auf den ersten Bli
k ers
heint dies sinnlos. Es gibt aller-dings zahlrei
he Gr�unde, die diese zweite Phase notwendig ma
hen. Der Wi
htigste istin Materiale�ekten begr�undet. Geladene Teil
hen we
hselwirken mit dem Detektor-material, wel
hes sie dur
hqueren. Dies ist zum einen die notwendige Voraussetzungum �uberhaupt eine Messung vornehmen zu k�onnen. Andererseits zieht es au
h eherunerw�uns
hte E�ekte na
h si
h. So verlieren die Teil
hen bei dieser We
hselwirkungEnergie und ihre Flugbahn wird dur
h Vielfa
hstreuung abgelenkt. Ents
heidend istnun, dass die St�arke dieser E�ekte, neben den Eigens
haften des dur
hquerten Mate-rials, von der Masse der Teil
hen abh�angt. Wenn also z.B. der Zerfall D0 ! K��+rekonstruiert werden soll, ist es notwendig die negativ geladene Spur mit einer Kaon-Hypothese neu anzupassen. Die �Anderung der Teil
henhypothese von � auf K istdabei der triviale Teil. Um die Masse des D-Mesons korrekt zu rekonstruieren, ist esnotwendig, au
h alle Materialeigens
haften ri
htig zu behandeln. Um dies mit akzep-tablen Zeitverhalten zu errei
hen muss ein erhebli
her te
hnis
her Aufwand betriebenwerden. Aus diesem Grund ist Behandlung dieses Themas ein S
hwerpunkt dieserArbeit.Methodik der KorrelationsanalyseAusgehend von der hohen Qualit�at der geladenen Teil
henspuren ist es m�ogli
h einklares Signal f�ur den Zerfall D0 ! K��+ aus dem gro�en Untergrund, der na
h wievor in den vom Zweispur-Trigger gesammelten Datensatz vorhanden ist, zu extrahie-ren. das Vorhandensein von Korrelationen l�asst si
h dann aus den relativen Z�ahlrateneines Histogramms extrahieren, in dem die Massenspektren der �D0 und D0 gegen-einander aufgetragen sind. Die hierf�ur verwendete Methode setzt voraus, dass dasMassenspektrum symmetris
h ist und si
h in einen zentralen Signalberei
h und zweiau�enliegende Untergrundberei
he einteilen l�asst. Wie man in Abb. 4 sehen kann, ist
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21Abbildung 5: Illustration derKorrelationsanalyse. Die Aus-dr�u
ke in den Feldern bezei
h-nen die relativen Wahrs
hein-li
hkeiten f�ur den Fall unkorre-lierter Produktion.dies f�ur das rekonstruierte D0 Massenspektrum ist in guter N�aherung der Fall. Unterdiesen Voraussetzungen, kann man einfa
he Ausdr�u
ke f�ur die Wahrs
heinli
hkeitenangeben, einen Massenwert entweder in der Signaleregion (S +B), oder einer der Un-tergrundregionen (B) zu �nden. Im Falle unkorrelierter Produktion f�uhrt dieser Ansatzdirekt auf die Wahrs
heinli
hkeiten (bzw. relativen Z�ahlraten) im zweidimensionalenMassenspektrendiagramm, wie sie in Abb. 5 eingetragen sind. Damit ist es m�ogli
h un-ter der Annahme unkorrelierter Produktion aus den a
ht �au�eren Bins eine Vorhersagef�ur den zentralen Bin abzuleiten. Wenn die tats�a
hli
he Z�ahlrate signi�kant �uber dervorhergesagten liegt, stellt dies eine Evidenz f�ur korrelierte D0- �D0-Produktion dar.Die dargestellte Methode der Korrelationsanalyse wurde mit Hilfe eine Toy-Monte-Carlo-Studie erfolgrei
h auf ihre Anwendbarkeit �uberpr�uft. Die Anwendung auf das�D0-D0-Massenspektrum liefert eine �uberzeugende Evidenz von 5.9 � f�ur korrelierteD0- �D0-Produktion.S
hlussbemerkungIm Run 2, der zweiten Operationsphase des Tevatron Bes
hleunigers, hat das CDF 2-Experiment eine gro�e Menge an verwertbaren Daten genommen und erfolgrei
h repro-



VIIIzessiert. Dies ist ein gro�er Erfolg, der unter Anderem den zahlrei
hen Verbesserungender Detektor-Hardware zu verdanken ist. Die M�ogli
hkeit, diese riesige Datenmanegein eÆzienter Form auszuwerten, verdankt die CDF 2-Kollaboration aber ni
ht zu-letzt den in dieser Arbeit vorgestellten Rekonstruktionsalgorithmen. Nur mit den hiervorgestellten Methoden der Spurrekonstruktion ist es m�ogli
h, Signale f�ur Zerf�alle vonD-Mesonen in vollst�andig hadronis
he Endzust�ande mit kleinem Verzweigungsverh�alt-nis zu extrahieren. Zum ersten Mal an einem Hadronenbes
hleuniger ist es mit Hilfeder hier entwi
kelten experimentellen Methoden gelungen, die korrelierte Produktionvon D-Mesonen na
hzuweisen.
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Introdu
tionIn the year 2004, at the time of this writing, the Nobel Prize in physi
s was awarded toDavid J. Gross, H. David Politzer and Frank Wil
zek for their ground breaking work ona non-abelian Quantum Field theory 
alled Quantum Chromodynami
s (QCD). Theyshowed that QCD displays the feature of asymptoti
 freedom, rendering it suitablefor des
ribing the strong intera
tions of quarks and gluons. With this result theinterpretation of quarks as physi
ally real entities be
ame mu
h more 
onvin
ing.Sin
e then it was possible to 
ompute many properties of quark dynami
s using QCD.On the other hand many important properties 
an still not be 
omputed from �rstprin
iples. Among these are fragmentation of heavy quarks into hadrons and theirprodu
tion in hadron-hadron 
ollisions. But these aspe
ts are of utmost importan
ewhen linking experimental observations to theoreti
al predi
tions sin
e free quarks arenot observed experimentally.This thesis is 
on
erned with the essential ingredients for the analysis of the pro-du
tion of heavy quark pairs in hadron-hadron 
ollisions as they are re
orded by theCDF 2 experiment. To establish su
h a signal in a hadron 
ollider environment isa highly non-trivial task. It requires a sophisti
ated dete
tor hardware as well as ahighly eÆ
ient and stable re
onstru
tion software, 
apable of 
oping with the largeamount of data 
olle
ted by a hadron 
ollider experiment. Here, the meaning of ef-�
ien
y is twofold: it denotes a measure of the ability to �nd what is there as wellas 
omputing eÆ
ien
y in terms of CPU time and memory 
onsumption. A theoret-i
ally perfe
t algorithm is worth nothing if it is not implemented in su
h a way thatit reliably runs on a real-world 
omputer. The importan
e of re
onstru
tion softwareand the 
ompli
ations arising during its implementation are frequently underestimatedparts of the experimental design. All too often, a slight 
hange in the design of thedete
tor hardware, e.g. a 
hange of the bonding s
heme in one layer of a sili
on vertexdete
tor, 
reates unforseen obsta
les on the way to an eÆ
ient re
onstru
tion 
ode.On the other hand it is 
ertainly impossible to predi
t all impli
ations of any non-trivial design, may it be hardware or software. This is espe
ially true in the 
ase ofsystems for 
harged parti
le tra
k re
onstru
tion at hadron 
ollider experiments likeCDF 2. It takes mu
h experien
e and many development 
y
les to �nally 
ome upwith re
onstru
tion 
ode that makes it feasible to run an analysis on hundreds of mil-9



10 Introdu
tionlions of events. Consequently, mu
h e�ort had to be put in the development of tra
kre
onstru
tion and tra
k �tting algorithms. This resulted in a highly a

urate andeÆ
ient implementation whi
h is the basis of all tra
k-based analyses in the CDF 2
ollaboration. Many aspe
ts of this software implementation will be dis
ussed in de-tail in 
hapter 3, emphasising the 
ru
ial role of an a

urate model of the dete
torgeometry. Only with these powerful tools at hand, it was possible to establish eviden
efor 
orrelated D0- �D0 produ
tion for the �rst time at a hadron 
ollider experiment.In 
hapter 1 the impli
ations of hadronisation models on the experimental observ-ables is dis
ussed in more detail. It will be shown that the angular distribution ofthe meson momenta is a useful variable for distinguishing between various produ
tionme
hanisms on
e eviden
e for 
orrelated Charm produ
tion is established. This, andthe other possible sour
es of 
orrelated Charm, like de
ays of exoti
 parti
les, willnot be subje
t of any analysis presented in this thesis. The signi�
an
e of the raisedquestions, however, emphasises on
e more the importan
e of the algorithms used forextra
ting 
lean signals of hadroni
 de
ay modes with low bran
hing ratios from thelarge ba
kground present in hadron 
ollider experiments.The hardware aspe
ts of the experimental setup will be dis
ussed in 
hapter 2.For the �rst time at a hadron 
ollider experiment CDF 2 has 
ommissioned a dis-pla
ed tra
k trigger. Until November 2004 CDF 2 has 
olle
ted 270,103,586 events,
orresponding to � 481pb�1 of data, with this trigger alone. Not relying on leptonsignatures, the displa
ed tra
k trigger a

umulates hadroni
 de
ays of long-lived par-ti
les. This dataset is the basis of many analyses in the CDF 2 
ollaboration andespe
ially of the 
orrelation analysis presented in 
hapter 4.Clear high statisti
s signals of the three 
harmed meson de
ays D0 ! K��+,D+ ! K��+�+ and D�+ ! D0(! K��+)�+s are established in 
hapter 4. The massestimates resulting from �ts to the re
onstru
ted mass spe
tra are in very good agree-ment with the known meson masses. This impressively demonstrates the a

ura
yof the geometry model underlying the tra
k �t algorithm. After establishing thesesignals, a 
orrelation analysis method is introdu
ed and validated using a toy MonteCarlo study. This method is then applied to the D0 and �D0 mass spe
tra, yielding a
onvin
ing eviden
e for 
orrelated D0- �D0 produ
tion with a signi�
an
e of 5.9 �.



Chapter 1Sour
es of Correlated Open CharmIntrodu
tion: de�nition of 
orrelated open 
harm; restri
tions imposed by experiment| Prompt Produ
tion of Charmed Hadrons: overview; perturbative ansatz and leadingorder 
ontributions; higher order 
ontributions; additional higher order 
ontributions| Open Charm from De
ays: B de
ays; 
harmonium and exoti
 state de
ays1.1 Introdu
tionDe�nition of Correlated Open Charm.|An event is said to 
ontain open Charm whenthere is at least one 
harmed meson or baryon present in the event. Note that thisis not the same as requiring a 
 or �
 quark. Charmonium, i.e. bound states with
�
 quark 
ontent like the J= , are not open 
harm sin
e the overall 
harm 
ontentof these hadrons is zero. They may, however, de
ay into 
harmed mesons thereby
reating open Charm. Su
h de
ays are one possible sour
e of 
orrelated open Charm,see se
tion 1.3. Correlated open Charm is then de�ned by the presen
e of two 
harmedhadrons originating from the same intera
tion. Correlated open Charm produ
tion isnot at all an unexpe
ted phenomenon. There are several known sour
es 
ontributingto it. These will be dis
ussed in the following se
tions. It is, however, a phenomenonthat is hard to establish experimentally in a hadron 
ollider environment.Restri
tions Imposed by Experiment.|While the above de�nition in
ludes all 
harmedhadrons and all possible de
ay modes, only a subset of them is experimentally a

es-sible. In this analysis we furthermore restri
t ourselves to fully 
harged �nal statesthat 
an be re
onstru
ted ex
lusively. For 
harged 
urrent weak de
ays this impliesfully hadroni
 �nal states. For pra
ti
al reasons that will be
ome evident in 
hapter3 we 
on
entrate on low multipli
ity �nal states of the most abundant mesons. Table1.1 lists the mesons and de
ay modes used in the analysis presented in this thesis1.1Throughout this thesis 
harge 
onjugate states are always implied unless otherwise stated.11



12 Chapter 1. Sour
es of Correlated Open CharmBesides the re
onstru
tion eÆ
ien
y the relatively low bran
hing ratios of these �nalstates are the major statisti
s limiting fa
tors2. Given this list the signature for 
orre-lated open Charm is the presen
e of any 
ombination of two mesons that 
an be tra
edba
k to a 
ommon produ
tion vertex. There are many interesting questions raised inthe following se
tions. Most of them will not be investigated further in this thesis.They do, however, 
learly show the importan
e of the experimental tools des
ribed inthis do
ument. Without these tools, there would be no hope of ever resolving a singleone of the questions in the framework of the CDF 2 experiment.Meson De
ay Mode Bran
hing Ratio[1℄D0 D0 ! K��+ (3:80� 0:09)� 10�2D�+ D�+ ! D0 �+ (67:7� 0:5)� 10�2D+ D+ ! K��+�+ (9:1� 0:6)� 10�2Table 1.1: Charmed meson de
ay modes and their bran
hing ratios.1.2 Prompt Produ
tion of Charmed HadronsOverview.|The �rst sour
e of 
orrelated open 
harm to be 
onsidered is the pro-du
tion of 
harmed mesons dire
tly in the proton anti-proton 
ollision. This is also
alled prompt produ
tion as opposed to the produ
tion in de
ays of long lived par-ti
les. Theoreti
ally the intera
tions of quarks as 
oloured parti
les is des
ribed inthe framework of QCD. But it is not yet possible to 
al
ulate the whole dynami
sof hadron produ
tion in hadron-hadron 
ollisions starting from this Quantum FieldTheory. Espe
ially two aspe
ts are hard to des
ribe theoreti
ally, namely the internaldynami
s of the in
ident parti
les and the fragmentation of the partons (quarks andgluons) produ
ed in the 
ollision into hadrons. Thus it is ne
essary to employ modelsin order to get a handle on these aspe
ts. The in
ident parti
le dynami
s are des
ribedby Parton Distribution Fun
tions. These fun
tions model the parton 
ontent and themomentum distribution among the partons. They 
an be measured in deep inelasti
s
attering experiments. Fragmentation models are not as a

essible experimentally.One 
ommonly used fragmentation model is the Lund String Model[2℄. In this pi
ture,a string represents the 
olour 
on�nement �eld between two quarks squeezed into atubular region between the quarks, giving rise to a linear 
on�nement potential. Nev-ertheless, perturbative QCD 
an su

essfully be applied to short distan
e pro
esses inwhi
h heavy quarks are produ
ed from the in
ident parti
le partons. This will be the2For the D�+ ! D0�+ de
ay the D0 bran
hing ratios have to be folded in.
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Figure 1.1: Leading order diagrams for heavy quark anti-quark pairprodu
tion. Gluon-gluon fusion (above) and quark-anti-quark anni-hilation (below).

starting point for the dis
ussion of heavy quark produ
tion in the remainder of thisse
tion.Perturbative Ansatz and Leading Order Contributions.|The perturbative ansatz as-sumes that the overall 
ross se
tion 
an be fa
tored in su
h a way that the shortdistan
e 
ross se
tion is no longer sensitive to momentum s
ales below the heavyquark mass[3℄. Corre
tions are then suppressed by powers of the heavy quark mass.This ansatz allows to expand the short distan
e 
ross se
tion in powers of �s(�2) at agiven s
ale �. The lowest order terms in this series are of O(�2s). At this order thereare 
ontributions from quark-anti-quark annihilation and gluon-gluon fusion,q + �q ! Q+ �Qg + g ! Q+ �QAt Tevatron energies the main 
ontribution 
omes from gluon-gluon fusion. The 
or-responding diagrams are shown in �g. 1.1.Higher Order Contributions.|In the 
ase of the 
harm quark the mass suppressionis not as strong a in the 
ase of the bottom quark. Thus the produ
tion is moresensitive to higher order 
orre
tions and it is ne
essary to in
lude them. The diagrams
ontributing at order O(�3s) are obtained by adding real or virtual gluons to the lowestorder diagrams. There is a vast number of su
h diagrams due to the many possible



14 Chapter 1. Sour
es of Correlated Open Charmpla
es at whi
h gluons 
an be atta
hed. Some of them are shown in �g. 1.2.
gg 
�
 gg 
�
 ...
gg 
g�
 gg 
g�
 ...Figure 1.2: Some higher order diagrams for heavy quark anti-quarkpair produ
tion obtained by adding virtual (above) or real (below)gluons.

Additional Higher Order Contributions.|Further 
onsiderations suggest that addi-tional higher order diagrams might 
ontribute signi�
antly to the 
harm anti-
harmprodu
tions 
ross se
tion. The lowest order 
ross se
tion for the pro
ess gg ! gg isabout a hundred times larger than that of the pro
ess gg ! Q �Q. Thus the gluonsplitting pro
ess gg ! g(! Q �Q)g 
an numeri
ally 
ompete with the lowest ordergluon fusion, although it is formally of O(�3s)[3℄. Additionally, non-perturbative frag-mentation e�e
ts 
an alter the properties of the emerging hadrons, thereby a�e
tingthe relative experimental a

essibility of the various produ
tion pro
esses[4℄.
g
g

g

�


g
g

gg

�


g
g

g

�


Figure 1.3: Diagrams for additional higher order produ
tion pro-
esses.



1.3. Open Charm from De
ays 15Some examples of additional higher order diagrams are shown in �g. 1.3. Although allof them involve g ! Q �Q verti
es, they are usually subdivided into di�erent 
lasses[4℄.� 
avour ex
itation pro
esses, when a heavy 
avour from the parton distributionof one in
ident parti
le is put on mass shell by s
attering against a parton of theother in
ident parti
le, �g. 1.3 (left).� gluon splitting pro
esses, when no heavy 
avour enters the hard s
attering, andg ! Q �Q bran
hing o

urs in the initial or �nal state shower, �g. 1.3 (right).The 
lassi�
ation of the pro
ess in �g. 1.3 (
entre) is a little ambiguous. It is usu-ally 
lassi�ed as gluon splitting sin
e it does not 
ontain heavy 
avours in the hards
attering.From the experimental point of view it is interesting that some distributions willlook quite di�erent for these pro
esses 
ompared to gluon-gluon fusion: in the latterpro
ess the heavy quarks are produ
ed ba
k to ba
k, leading to a large angular dif-feren
e of the momenta of the observable hadrons. On the other hand, heavy quarkpairs produ
ed via gluon splitting 
an lead to nearly 
ollinear hadron momenta, a
lear experimental signature on
e 
orrelated open 
harm produ
tion is established.1.3 Open Charm from De
aysB De
ays.|Bottom quarks dominantly de
ay into Charm quarks via the emission ofa virtual W boson as shown in �g. 1.4. The transition b ! W� + u is suppressedby jVubj=jV
bj. Consequently there is almost always one D meson among the de
ayprodu
ts.Whether there is another D meson and its quark 
ontent depend on the way theW boson bran
hes. There are only to possibilities that produ
e a se
ond D meson:
b 


W�� jV
bj
Figure 1.4: The b!W� + 
 vertex.



16 Chapter 1. Sour
es of Correlated Open Charmeither W� ! �
 + s or W� ! �
 + d. The latter is Cabbibo suppressed by jV
dj=jV
sj.The diagram shown in �g. 1.5 
overs all the possibilities, namely B+ ! �D(�)0D(�)+(s) ,B0 ! D(�)�D(�)+(s) and B0s ! D(�)�s D(�)+(s) . The indi
es in parentheses are optional. Theexperimental signature of 
orrelated open Charm from B de
ays is di�erent than theone for prompt produ
tion due to the long lifetime of the B mesons. Establishing asignal for 
orrelated open Charm from B de
ays enables a measurement of the relativebran
hing ratios of the various de
ay modes listed above.
W+

u; d; s�b u; d; s�
�s; �d



Figure 1.5: Diagrams for B de
aying weakly into D �D.Charmonium and Exoti
 State De
ays.|Other possible sour
es of 
orrelated openCharm are Charmonium and exoti
 state de
ays. Charmonium de
ays are interestingbe
ause there is still not mu
h known about the 
�
 states that have a signi�
antbran
hing ratio into D �D, namely  (3770) and  (4040)[1℄.Even more interesting is the investigation of exoti
 state de
ays into D �D. Re
entlythe Belle 
ollaboration reported the observation of a previously unknown narrow res-onan
e at m � 3872 GeV[5℄ de
aying into the �nal state J= (! �+��)�+��, now
alled X(3872). This unexpe
ted dis
overy triggered many interesting resear
h a
-tivities in both, theory and experiment. After the dis
overy had been 
on�rmed bythe CDF 2 [6℄ 
ollaboration the experimental fo
us shifted towards the determinationof the properties of the X(3872). The CDF 2 
ollaboration is 
urrently working ona measurement of the spin and parity quantum numbers[7℄. It is still possible that
harged isospin partners of the X(3872) with a mass below the D0D�+ threshold exist.These partners 
ould de
ay into D0 �D0��. Thus establishing a signal for 
orrelatedD0 �D0 produ
tion might help to shed some light on the properties of the X.



Chapter 2Experimental SetupThe Tevatron: overview; the a

elerator 
hain; performan
e | The CDF 2 Dete
tor:overview; the 
oordinate system; the tra
king system; parti
le identi�
ation; 
alorime-ters; the muon system | The CDF 2 Trigger System: overview; the Two Tra
k Trigger2.1 The TevatronOverview.|The Tevatron is a symmetri
 proton and anti-proton 
ollider ring with a
ir
umferen
e of 2� km, lo
ated at the Fermi National A

elerator Laboratory (Fer-milab) in Batavia/Illinois, USA. In Run 1, the �rst phase of operation from 1985 to1996, the Tevatron was running at a 
entre-of-mass energy of ps = 1:8 TeV. Amongthe highlights of physi
s results from Run 1 are the the �rst experimental eviden
efor the top quark[8℄ and a high a

ura
y measurement of its mass[9℄. In the ongoingRun 2, the se
ond phase of Tevatron operation started in 2001, the two Tevatron ex-periments CDF 2 and D� are pursuing physi
s goals su
h as measuring the frequen
yof B0s �B0s os
illations, Top-Quark physi
s, Higgs sear
hes and analyses of rare physi
alpro
esses. To this end the Tevatron was upgraded to a
hieve higher instantaneousluminosity and a 
entre-of-mass energy of ps = 1:96 TeV.The a

elerator 
hain.|Fig. 2.1 shows a s
hemati
 view of the Fermilab a

elerator
hain for Run 2. In the �rst step of a

eleration negatively 
harged hydrogen ions areprodu
ed in a Co
k
roft-Walton pre-a

elerator. The ions leave the Co
k
roft-Waltonwith an energy of 750 keV and are then inje
ted into the Lina
, a linear a

elerator 150m in length. The Lina
 a

elerates the ions to an energy of approximately 400 MeV.The protons produ
ed by stripping the ele
trons o� the hydrogen ions are then fed intothe Booster, a 150 m diameter syn
hrotron. When leaving the Booster, the protonshave an energy of about 8 GeV. Before inje
tion into the Tevatron they undergo a�nal pre-a

eleration in the Main Inje
tor whi
h gives them an energy of 120 GeV.17



18 Chapter 2. Experimental SetupThe Main Inje
tor proton beam is also used to produ
e the anti-protons by fo
usingit onto a �xed ni
kel target. After separating the protons from the numerous di�erentparti
les emerging from this 
ollision, they are fo
used and stored in the A

umulatorRing. On
e a suÆ
iently large number of anti-protons is stored, they are fed ba
kinto the Main Inje
tor where they are a

elerated to 120 GeV before inje
tion into theTevatron. In the Tevatron, the proton and anti-proton beam get their �nal energy of0.98 TeV, yielding the 
entre-of-mass energy of ps = 1:96 TeV.

Figure 2.1: The Fermilab a

elerator 
omplex for Run 2.Performan
e.|Already in Run 1 the anti-proton produ
tion was the major limitingfa
tor of the Tevatron eÆ
ien
y. In order to improve the situation for Run 2 theRe
y
ler was introdu
ed. The idea is to re-use the remaining anti-protons after aTevatron store. About 75% of the anti-protons are expe
ted to survive a store. Theseare de
elerated down to the energy of 8 GeV in the Main Inje
tor and then storedin the Re
y
ler for re-use in the next Tevatron �ll. Unfortunately, in the beginningof Run 2, the Re
y
ler 
ould not be 
ommissioned as planned and anti-protons werevanishing at a higher rate as expe
ted. Thus the Run 2 design luminosity of L =1032 
m�2s�1 was not rea
hed immediately. While this has delayed some of the physi
sgoals of Tevatron Run 2, the Fermilab A

elerator Division has meanwhile identi�edand solved the major problems and the Tevatron is now working 
lose to Run 2 design



2.1. The Tevatron 19spe
i�
ations. Figures 2.2 and 2.3 show the Tevatron Run 2 integrated luminosity andpeak luminosity, respe
tively1.

Figure 2.2: Integrated Tevatron Run 2 luminosity.

Figure 2.3: Tevatron Run 2 peak luminosity.1As of O
tober 19th 2004.



20 Chapter 2. Experimental Setup2.2 The CDF 2 Dete
torOverview.|The CDF 2 dete
tor is a general purpose 
ollider dete
tor[10℄. It featuresa vertexing and tra
king system, parti
le identi�
ation, a super
ondu
ting solenoidgenerating a 1.4 T magneti
 �eld, 
alorimetry and muon 
hambers. The 
omponentsare arranged in the 
ylindri
al symmetry typi
al to 
ollider dete
tors. Fig. 2.4 showsa side view of the CDF 2 dete
tor.

Figure 2.4: The CDF 2 dete
tor.The Coordinate System.|It will prove useful to de�ne the 
oordinate system used inCDF 2 sin
e we will frequently refer to it. We use a right-handed 
oordinate systemin whi
h the positive z dire
tion is de�ned by the dire
tion of the proton beam.Geographi
ally, the proton beam points east at the lo
ation of the CDF 2 dete
tor.The polar angle � is measured from the positive z dire
tion and the azimuthal angle� is measured from the plane de�ned by the Tevatron ring. Another frequently usedvariable is the pseudo-rapidity � whi
h is de�ned as � = � ln(tan(�=2)). The pseudo-rapidity has the unique property that in hadron-hadron 
ollisions the parti
le densityis almost 
onstant in equal intervals of �. It 
an be seen from the de�nition thatthis means that the vast majority of parti
les emerging from a 
ollision go into the



2.2. The CDF 2 Dete
tor 21forward and ba
kward dire
tions and hen
e 
an not be dete
ted. Throughout thisthesis we will adopt the 
ommonly used jargon that \forward" refers to the forwardand ba
kward dire
tions, i.e. � 
lose to 0 or �.The Tra
king System.|Pre
ise and eÆ
ient re
onstru
tion of 
harged parti
le tra
ksis the 
ore ingredient of many CDF 2 analysis and espe
ially important to the workpresented in thesis. Hen
e we will des
ribe it in a little more detail.The tra
king system 
onsists of two major 
omponents: the Central Outer Tra
ker(COT) and a sili
on vertex dete
tor. The COT is a 
ylindri
al drift 
hamber 304
m in length along the z axis, 
overing the radial region 44 
m < r < 132 
m. This
orresponds to a pseudo-rapidity 
overage of j�j < 1. The COT has eight super-layerswith twelve measurements in ea
h super-layer. Four out of the eight super-layersare axial layers, measuring only tra
k parameters in the r-� plane. The remainingfour super-layers add z information by virtue of a stereo angle of �3Æ. Due to puregeometri
al reasons the tra
k density COT is mu
h lower than in the sili
on dete
tor.In 
ombination with the large lever arm of 88 
m and the high number of measurementsper tra
k this enables high purity 
harged parti
le tra
king with ex
ellent momentumresolution. However, the z parameter and pointing resolution at the 
ollision point ispoor 
ompared to that of the sili
on dete
tor.The sili
on tra
king system 
onsists of three subsystems with di�erent features,namely the SVX II the Intermediate Sili
on Layers (ISL) and the so-
alled Layer 00(L00). The sili
on dete
tor system allows for standalone 
harged parti
le tra
kingindependently of the COT in the forward regions. The geometry and pseudo-rapidity
overage of the sili
on dete
tor is illustrated in �g. 2.5.
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z [m]Figure 2.5: Geometry of the CDF 2 sili
on dete
tor.



22 Chapter 2. Experimental SetupThe SVX II is organised in three barrels with �ve layers of double-sided sili
onmi
ro-strip sensors arranged in twelve wedges. One side of the sili
on sensors measurer-� parameters with strips parallel to the z axis. The strips on the other side are tiltedby a stereo angle and allow z parameter measurements. There are two di�erent typesof sensors with respe
t to the stereo angle: 90Æ stereo and Shallow Angle Stereo (SAS)sensors with an angle of �1:2Æ. While the z resolution of the latter is poor 
ompared tothe 90Æ sensors, the number of ambiguous 
ombinations with axial strips is signi�
antlylower. This is illustrated in �g. 2.6. In the 90Æ stereo layers the situation is further
ompli
ated by readout 
hannel multiplexing. In order to limit the total number ofreadout 
hannels, up to three strips on di�erent sensors are 
ombined in one 
hannel.In these 
ases the de
ision whi
h of the strips 
orresponds to the readout 
hannel 
anonly be made when a tra
k hypothesis is already available. Contrary to the situationin the 90Æ stereo layers, the lower ambiguity in the SAS layers makes it possible to
ombine strips from both sides to a three dimensional measurement independentlyof a tra
k hypothesis. This does not only provide an independent three dimensionalmeasurement. In su
h a 
ombination the 
ontributing hits also 
on�rm ea
h other.The sili
on pattern re
ognition algorithms bene�t a lot from this, as will be
omeevident in se
tion 3.2. The SVX II has two SAS and three 90Æ stereo layers.The ISL is lo
ated between the SVX II and the COT. Its main purpose is to providemeasurement points 
lose to the COT when pursuing drift 
hamber tra
ks into thesili
on dete
tor. Both ISL layers are SAS layers. Due to this, and its large � 
overageup to j�j = 2 it also plays a 
ru
ial role in sili
on standalone tra
king.The innermost subsystem of the sili
on dete
tor is L00. It is 
omposed of two

Figure 2.6: Ambiguities in the 
ombination of axial andstereo strips in 90Æ and 1:2Æ stereo layers. Corre
t 
om-binations are indi
ated by �lled blobs, possible but wrong
ombinations by empty 
ir
les.
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tor 23layers of single-sided mi
ro-strip sili
on sensors, mounted dire
tly onto the berylliumbeampipe. The purpose of L00 is to improve the the r-� resolution 
lose to theintera
tion point. It bears its name be
ause it was proposed beyond baseline[11℄ andthe name \layer 0" { re
e
ting the index 
ounting of the C++ programming language{ was already assigned to the innermost SVX II layer. After L00 was added to thedete
tor des
ription it te
hni
ally got assigned the index '0'. To avoid 
onfusion bydi�erent numbering s
hemes we will use the o�ine software numbering s
heme fromtable 2.1 throughout this thesis.The me
hani
al dimensions of the sili
on sensors in the various dete
tor 
ompo-nents di�er 
onsiderably. Most importantly the strip pit
h varies in the di�erent layersof SVX II and ISL as 
an be seen in table 2.1. How this a�e
ts the resolution of theposition measurements will be dis
ussed in more detail in se
tion 3.2.pit
h [�m℄axial stereodete
tor layer stereo angle [Æ℄ strip readout strip readoutL00 0 n/a 25.0 50.0 n/aSVX II 1 90.0 60.0 60.0 141.0 141.02 90.0 62.0 62.0 125.5 125.53 +1.2 60.0 60.0 60.0 60.04 90.0 60.0 60.0 141.0 141.05 -1.2 65.0 65.0 65.0 65.0ISL 6 +1.2 55.0 110.0 73.0 146.07 +1.2 55.0 110.0 73.0 146.0Table 2.1: Stereo angle, strip and readout pit
h of the di�erent sili
on dete
tor
omponentsParti
le Identi�
ation.|Besides the muon 
hambers, the only dete
tor 
omponentwith the sole purpose of identifying parti
les is the Time of Flight dete
tor (TOF).The TOF is mounted just outside the COT inside the solenoid as shown in �g. 2.7.For a given parti
le, the 
ombination of the momentum measurement from theCOT and the time of 
ight measurement allows to 
ompute the parti
les mass. Thusone 
an distinguish parti
les of di�erent mass, espe
ially protons, K-mesons and �-mesons. This only works for 
harged parti
les sin
e neutrals 
an not be dete
ted in thedrift 
hamber. The distin
tion of K and �-mesons is of utmost importan
e for manyB physi
s analysis, espe
ially B0s �B0s os
illations. In Run 1 the only way to distinguish
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ight dif-feren
es as a fun
tion of parti-
le type and momentum. Thedashed line indi
ates K=� sep-aration power of COT dE=dx.K-mesons from �-mesons was their di�erent energy loss in the drift 
hamber. Bothmethods have a di�erent resolution dependen
e on the parti
le momentum. The newTOF dete
tor is espe
ially powerful in the momentum region between one and two GeVwhere the drift 
hamber dE=dx does not give mu
h information. This is illustrated in�g. 2.8. Other means of parti
le identi�
ation involve the ele
tromagneti
 
alorimeterin 
ombination with the COT for ele
trons, the muon 
hambers and dE=dx in thesili
on vertex dete
tor. The best overall separation is a
hieved by 
ombining theinformation from all dete
tor 
omponents properly, e.g. using a neural network.Calorimeters.|The CDF 2 dete
tor features several 
alorimeters: 
entral ele
tromag-neti
 and hadron 
alorimeters, end-wall hadron 
alorimeters and end-plug ele
tromag-neti
 and hadron 
alorimeters. The 
alorimetry 
overs the whole azimuth range andthe pseudo-rapidity region j�j < 3:64. The 
alorimeters are designed to measure theenergy of hadroni
 jets photons and ele
trons. They are mounted outside the solenoid,as 
an be seen in �g. 2.4.The Muon System.|The muon system is the outermost part of the CDF 2 dete
tor.It 
onsists of s
intillators drift 
ells and steel absorbers. Usually only muons rea
h themuon 
hambers sin
e all other parti
les are stopped inside the 
alorimeter or the steelabsorbers. In order to rea
h the muon 
hambers a muon must have a momentum of� 1.5 GeV. This setup allows for very pure de
isions on whether there was one oremore muons produ
ed in a 
ollision, rendering the muon system an indispensable tool
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s analysis involving J= ! �+�� or semi-leptoni
 meson de
ays and the
orresponding triggers.2.3 The CDF 2 Trigger SystemOverview.|The 
ollision rate at the Tevatron is mu
h higher than the rate at whi
hdata 
an be stored on mass storage. Thus the trigger plays an important role insele
ting the interesting events from a huge ba
kground. There is a large number oftrigger paths implemented in the CDF 2 trigger system, re
e
ting the broad physi
sprogramme of Run 2. It is beyond the s
ope of this do
ument to des
ribe them all indetail. We will restri
t ourselves to a general overview and a more detailed des
riptionof the Two Tra
k Trigger; the latter being espe
ially important for analysis presentedin this thesis.The CDF 2 trigger is a three level system with an overall reje
tion of 120,000:1.This redu
es the 
ollision rate to an event output rate of � 50 Hz. Given the a typi
alevent re
ord size of 200-300 kB this results in � 12 MB/s written to mass storage foro�ine analysis. Fig. 2.9 shows a s
hemati
 view of the data-
ow in the trigger.The �rst (L1) and se
ond (L2) trigger levels are implemented in hardware and
L2 trigger
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Figure 2.12: SVT impa
t parame-ter resolution.make use of several dete
tor 
omponents, namely the 
alorimeters the COT and themuon system. This is illustrated in �g. 2.10. It is worth noting that this triggersystem works nearly dead-time-less. This is a
hieved by storing events a

epted byL1 in bu�ers allowing L2 to make its de
isions asyn
hronously. The third trigger level(L3) is implemented in software running on a PC farm. The software environment inL3 is the same as in o�ine analysis. This allows to base the L3 de
isions on eventvariables re
onstru
ted with o�ine quality.The Two Tra
k Trigger.|The name Two Tra
k Trigger (TTT) denotes a trigger pathdesigned to trigger on de
ays of long lived parti
les into hadroni
 �nal states. Thereis a strong 
orrelation between the lifetime of the de
aying parti
le and the impa
tparameters of the de
ay produ
t tra
ks. The tra
k impa
t parameter d0 is de�ned asthe distan
e to the primary intera
tion point at the point of 
losest approa
h in thex-y-plane. This is illustrated in �g. 2.11. In order to make use of this 
orrelation it isne
essary to �rst re
onstru
t tra
ks in the r-�-plane. Sin
e the trigger has to deal witha high event rate of � 5 MHz, the tra
k re
onstru
tion is implemented in hardware.First, the eXtremely Fast Tra
k Finder (XFT)[12℄ �nds tra
ks in the COT in L1. Theresulting list of XFT tra
ks is then passed to the Sili
on Vertex Tra
ker (SVT)[13℄whi
h is part of L2. The SVT adds sili
on hits to the XFT tra
ks by employing asophisti
ated pattern mat
hing algorithm. The resulting impa
t parameter resolutionis 
lose to the o�ine resolution as shown in �g. 2.12. In order to pass the TTT, anevent is required to have the following properties.� at least two oppositely 
harged XFT tra
ks with pt > 2GeV/
and ��1;2 < 135Æ in L1



2.3. The CDF 2 Trigger System 27� at least two SVT tra
ks with pt > 2GeV/
, 100�m < jd0j < 1mmand �2SVT < 25 in L2� mat
h of the SVT tra
ks to COT tra
ks and 
on�rmation of pt and impa
tparameter requirements with the additional requirements of 2Æ < ��1;2 < 90Æand the de
ay length in the r-�-plane proje
ted on pt (Lxy) greater than 200 �min L3.While the TTT was espe
ially designed to trigger on hadroni
 B meson de
ays su
has B ! �+�� it also enri
hes samples of hadroni
ally de
aying 
harmed mesons.A
tually, this led to the �rst publi
ation of the CDF 2 
ollaboration on the massdi�eren
e m(D+s ) - m(D+)[14℄. All results presented in this thesis are based on thehadroni
 dataset 
olle
ted by the TTT.





Chapter 3The Re
onstru
tion of ChargedParti
le Tra
ksIntrodu
tion | Tra
k Finding: tra
k parameterisation; tra
king in the COT; sili
onhit re
onstru
tion; outside-in sili
on tra
king; sili
on stand-alone tra
king; inside-outtra
king; summary | Tra
k Fitting: overview; the kalman-�tter | Dete
tor Modellingand Material Des
riptions: introdu
tion; 
omplete geometry des
ription; a
tive dete
tor
omponent model; passive material model; summary
3.1 Introdu
tionIn this 
hapter the term \re
onstru
tion" refers to the task performed by various algo-rithms operating on data that has been 
olle
ted by the CDF 2 experiment and storedon digital mass storage. The algorithms are implemented in software using the C++programming language[15℄. Without suÆ
iently stable and eÆ
ient o�ine software,physi
s results 
ould not be obtained in a reasonable time. Here \eÆ
ien
y" refers toboth, the measure of the ability to �nd what is there, and a good 
omputing perfor-man
e in terms of memory and time 
onsumption. These two eÆ
ien
y requirementsoften 
on
i
t and are hard to meet at the same time. This is espe
ially true for the
ombinatorial problem of 
harged parti
le tra
k �nding, an essential prerequisite ofany ex
lusive analysis. Furthermore, high a

ura
y and purity of the re
onstru
tionalgorithms 
an also 
on
i
t with good 
omputing eÆ
ien
y. It is non-trivial, but never-theless possible, to optimise the software with respe
t to all these requirements. Someaspe
ts of su
h an optimisation will be illustrated by dis
ussing the implementationof a highly a

urate and yet fast dete
tor model in se
tion 3.4.29
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onstru
tion of Charged Parti
le Tra
ks3.2 Tra
k FindingTra
k Parameterisation.|Due to the magneti
 �eld 
harged parti
le traje
tories arebent to heli
es. The helix orientation is su
h that the r-�-proje
tion is a 
ir
le andthe axis is parallel to the z-axis. For a given orientation �ve additional parametersare needed to fully spe
ify a helix. Two di�erent 
hoi
es of parameters are used inCDF 2 tra
king: perigee parameters and lo
al parameters. For both 
hoi
es the threeparameters spe
ifying the 
ir
le in r-� are illustrated in �g. 3.1. The perigee is thepoint of 
losest approa
h to the origin in the r-�-plane. This renders the perigeeparameterisation the most suitable for physi
s analysis. The �ve perigee parametersare:� The 
urvature C = 12R where R is the radius of the 
ir
le in the r-�-plane.� The impa
t parameter d0. Its magnitude is the two dimensional distan
e to theorigin. The sign is 
hosen su
h that ~pt ~d0 and ~ez form a right handed system.In the 
ase illustrated in �g. 3.1 d0 is negative.� The dire
tion of ~pt at the perigee �0.� The z-position of the perigee z0.
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3.2. Tra
k Finding 31� A measure of the momentum z-
omponent 
ot � = dz=ds, where s is the pathlength in r-�.Parameterising tra
ks 
lose to the primary intera
tion point is optimal for analysis.But it has disadvantages in tra
k �nding and �tting, espe
ially when using a pro-gressive �t method. The reason for this is that dete
tor 
omponents in the tra
kingvolume do not measure perigee parameters. They all measure lo
al positions relativeto a known referen
e frame. This is the distan
e to a wire in the COT and the distan
eto the 
entre of a sili
on sensor in the SVX II and ISL. Choosing helix parametersthat re
e
t this simpli�es and speeds up �tter implementations. The fast Kalman-�tter implementation used in most sili
on tra
k �nding algorithms and for re�ttinguses lo
al parameters. They are 
alled \lo
al" be
ause they are a fun
tion of r asillustrated in 3.1. The �ve lo
al parameters are:� The 
urvature � = 1=R where R is the radius of the 
ir
le in the r-�-plane.� The azimuth angle �.� The angular di�eren
e of the momentum dire
tion an the azimuth, �.� The z-position z� The polar angle at the point of parameterisation �.These parameters are only used internally. When tra
k re
onstru
tion or re�ttingis �nished they are 
onverted into perigee parameters for analysis. Two importantterms 
an now be de�ned more pre
isely: Tra
k �nding, or pattern re
ognition, means�nding sets of dete
tor measurements (hits) that are 
ompatible with the hypothesisthat they form a helix. Tra
k �tting is the determination of the helix parameters andthe asso
iated error matrix at a given spa
e point. Most of the time this spa
e pointwill be the perigee.Tra
king in the COT.|Charged parti
le tra
k �nding at CDF 2 starts in the COT.This has pure geometri
al reasons. Sin
e the number of tra
ks is 
onstant in � thetra
k density in r� is lower at larger radii. Due to the resulting lower hit density theassignment of hits to a tra
k hypothesis is mu
h more pure than in the inner dete
tor.The tra
king in the COT happens in several steps:1. r-� pattern re
ognition in the axial layers2. two-dimensional tra
k �t in r-�3. puri�
ation of axial hit 
ontent
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onstru
tion of Charged Parti
le Tra
ks4. r-z pattern re
ognition in the stereo layers5. two-dimensional tra
k �t in r-z6. puri�
ation of stereo hit 
ontent7. full three-dimensional tra
k �tThere are two algorithms implementing these steps, namely the segment linking andthe histogram linking algorithm[16℄. The segment linking algorithm �nds independenttra
k segments in the COT super-layers. The segments are then linked to form atra
k. The se
ond algorithm works in a less obvious way. In the r-� phase of patternre
ognition hits belonging to a tra
k are identi�ed by 
lustering in 
urvature spa
e.This works as follows. For a given pair of hits on 
an 
ompute the 
urvature 1=2R ofa 
ir
le in r-� using the beam-spot as the third point. The 
urvatures are �lled in ahistogram. Real tra
ks lead to peaks in this histogram, thereby allowing to identifythe 
orre
t hits. Obviously, this approa
h introdu
es a bias toward the beam-line.The histogram linking thus tends to be less eÆ
ient for tra
ks with large impa
tparameters, see �g. 3.2. On the other hand the histogram algorithm performs betterin high o

upan
y events[17℄. The eÆ
ien
ies of both algorithms on single � and t�tMonte Carlo are summarised in table 3.1.Algorithm single � e�. [%℄ t�t e�. [%℄Segment Linking 97� 1:4 85:4� 1:1Histogram Linking 98� 1:4 95:8� 1:1Table 3.1: EÆ
ien
y of the COT tra
king algorithms on single � andt�t Monte Carlo.EÆ
ien
y is de�ned as the ratio of found over �ndable tra
ks. A tra
k is 
onsidered�ndable under the following 
onditions:� The tra
k originates inside the beampipe� It passes through all COT layers, i.e jzj < 150 
m at r = 140 
m.� It has more than 20 hits in total.� The transverse momentum is greater than 0.5 GeVThe momentum requirement of pt > 0:5 GeV is rather loose. As 
an be seen in �g. 3.3the eÆ
ien
y drops rapidly for tra
ks with pt < 1:0 GeV. These low momentum tra
ks
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Figure 3.2: COT tra
king eÆ
ien
y vs. impa
tparameter on t�t Monte Carlo. Segment linking(left) and histogram linking (right). Figure 3.3: Histogramlinking eÆ
ien
y vs. ptfor t�t Monte Carlo.
ontribute most to the ineÆ
ien
y. For tra
ks with pt > 1:0 GeV the 
ombined COTtra
king eÆ
ien
y is well above 98% on t�t Monte Carlo. Note that t�t events are theworst 
ase s
enario with respe
t to o

upan
y. Sin
e, depending on the 
ir
umstan
es,the two algorithms di�er in their eÆ
ien
y they are run both. Ea
h is provided withthe full set of COT hits. This results in many dupli
ate tra
ks, i.e. tra
ks found byboth algorithms. The dupli
ates are identi�ed and removed in the last step of COTpattern re
ognition. After dupli
ate removal the dupli
ate fra
tion is below 0.9%. Thegain in overall tra
k �nding eÆ
ien
y is well worth this additional investment of CPUtime. In the L3 trigger timing is more important and only XFT tra
ks originatingfrom the primary intera
tion point have to be 
on�rmed. Thus only the histogramlinking algorithm is run in L3. While the spa
e point resolution is dominated bymeasurements in the sili
on dete
tor the COT provides a mu
h better momentumresolution. With �pt=p2t � 0:15% GeV�1 the momentum resolution supersedes thedesign spe
i�
ation[10℄.Sili
on Hit Re
onstru
tion.|Before the sili
on pattern re
ognition the sili
on hitsthemselves have to be re
onstru
ted. To this end the sili
on readout 
hannels ares
anned for strips with a 
harge above a 
ertain noise threshold. Conse
utive stripsbetween two 
harge minima are 
onsidered to belong to the same parti
le intera
tion.Su
h strips are said to form a 
luster. The hit position, i.e. the assumed interse
tionpoint of the parti
le tra
k with the sensor, is then determined by the 
harge-weightedmean of the strip positions.The resolution of this lo
al position measurement depends on the the strip pit
hand the number of strips in the 
luster. This number shows a large variation. However,only three 
lasses are 
onsidered in the determination of the resolution: 
lusters withone strip, two strips or more than two strips. The fra
tion of hits in the 
lasses in thedi�erent layers of the sili
on dete
tor is shown in table 3.2. The resulting resolutions
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onstru
tion of Charged Parti
le Tra
ksfra
tion of hits [%℄axial stereodete
tor layer 1 strip 2 strips >2 strips 1 strip 2 strips >2 stripsSVX II 1 7.7 22.8 69.5 17.0 25.0 58.02 8.8 25.7 65.5 13.7 23.7 62.53 11.6 29.6 58.8 4.0 19.6 76.44 7.5 25.3 67.2 13.9 24.5 61.65 12.9 24.5 61.6 12.9 30.9 56.2ISL 6 9.2 23.1 67.7 12.5 25.3 62.27 14.5 21.6 63.9 9.1 18.1 72.8Table 3.2: Number of strips per 
luster in the di�erent sili
on dete
tor layers.of the lo
al position measurements are listed in table 3.3. Due to the small errors ofthe position measurements in the sili
on dete
tor, the position measurement 
lose tothe primary intera
tion point is dominated by the innermost hits on the tra
ks. Thisimposes a high purity requirement on the tra
king algorithms: a wrong hit on a tra
khurts mu
h more than a missed hit, espe
ially in the innermost layers where the hitdensity is high. Many implementation details of the tra
king algorithms are owed tothis.Together with the known position and orientation of the sili
on sensor the lo
allyone-dimensional measurements provide a two-dimensional measurement in global 
o-ordinates. This is why they are known as 2D hits. The 2D hits are used in two di�erentways. Firstly, they are used dire
tly as two-dimensional measurements in the sili
onpattern re
ognition algorithms. Se
ondly, they 
an be 
ombined with a se
ond 2D hiton the other side of the sensor. The latter yields a lo
ally two-dimensional and glob-ally three-dimensional measurement. Hen
e the name 3D hits. As already mentionedin se
tion 2.2 these 
ombination are most useful in the SAS layers. Espe
ially in thesili
on stand-alone tra
king des
ribed below the SAS 3D hits play a 
ru
ial role.Outside-in Sili
on Tra
king.|In the sili
on dete
tor the hit density is mu
h higherthan in the COT. This makes it desirable to employ all available information that 
anhelp in the pattern re
ognition. The very pure and nearly dupli
ate free list of tra
ksprodu
ed by the COT tra
king algorithms provide su
h information. Consequently,the �rst step in sili
on pattern re
ognition is to pursue COT tra
ks into the innerdete
tor and add sili
on hits. This pro
edure is 
alled outside-in tra
king (OI). Asin the 
ase of the COT tra
king the OI tra
king is performed in separate r� and rz
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k Finding 35hit resolution [�m℄1 strip 2 strips >2 stripsdete
tor layer axial stereo axial stereo axial stereoSVX II 1 13 31 11 26 23 542 13 27 11 23 24 483 13 13 11 11 23 234 13 31 11 26 23 545 14 14 12 12 25 25ISL 6 24 24 21 21 43 437 24 24 21 21 43 43Table 3.3: Spatial resolution of sili
on hits depending on the layerand the number of strips in the 
luster.phases. And again there are two algorithms implementing this pro
edure: one basedon a generi
 progressive �tter[18℄ and one based on an extremely fast Kalman-Fitterimplementation des
ribed in se
tion 3.3[19℄. The two algorithms were developed in-dependently and evaluated against ea
h other in the pro
ess. This resulted in twohighly eÆ
ient and pure implementations. Both algorithms are run in o�ine produ
-tion. Unlike in the 
ase of COT tra
king they do not run both on the full hit set.The se
ond algorithm only uses sili
on hits not used by the �rst one, thereby redu
ingthe 
ost in terms of CPU time. The Kalman-�tter based algorithm is run se
ond.Sin
e it is slightly more eÆ
ient it 
an sometimes re
over tra
ks missed by the otheralgorithm.The working prin
iple and eÆ
ien
y of the two algorithms are almost identi
al.Thus it will be suÆ
ient to have a 
loser look at only one. We 
hoose the Kalman-Fitter based algorithm. In this algorithm there are three stages of pattern re
ognition.In the �rst phase only axial 2D hits are 
onsidered. In the se
ond SAS stereo hitsare added if they 
an be 
ombined to a 3D hit with an axial hit found in the �rstphase. In the third and last phase 90Æ z-hits are added. While a tra
k is 
onsidered avalid OI tra
k only if it has pi
ked up at least three axial hits, z-hits are not required.In prin
iple one 
ould do the pattern re
ognition for all kinds of hits in one go. Thisa
tually works quite well with a perfe
t dete
tor on Monte Carlo. In a realisti
 s
enariowith a misaligned dete
tor however, separating the pattern re
ognition phases for axialSAS and 90Æ z-hits has proven to be mu
h more robust. The basi
 algorithm is thesame in all three phases: starting from the COT inner wall the tra
k is propagatedinto the dete
tor until it interse
ts a sili
on sensor. If there is more than one hit
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ompatible with the tra
k the sear
h path is bran
hed a

ordingly. To a

ount forpossible dete
tor ineÆ
ien
ies there is always one additional bran
h in whi
h no hitis added in that layer. The bran
hing 
an lead to many hypothesis. This requiresan ex
ellent timing performan
e of the �tter and the interse
tion �nding 
ode. Thepro
edure is repeated until the innermost layer is rea
hed. But not all bran
hes arepursued that far. In ea
h measurement layer the bran
hes are 
he
ked against 
ertainquality 
riteria like, e.g., minimum fra
tion of found over expe
ted hits. Bran
hes thatdo not mat
h the 
riteria are eliminated. If more than one hypothesis survives untilthe end the best one has to be 
hosen. This is done using quality 
riteria like numberof hits and goodness of �t. A more detailed des
ription of the algorithm and its �netuning is provided in [19℄.There are many sensible de�nitions of eÆ
ien
y. All have in 
ommon that thedenominator is de�ned by the number of �ndable parti
le tra
ks. For the evaluationof the OI tra
king a tra
k is 
onsidered �ndable if it was re
onstru
ted in the COT withmore than 70 hits the parti
le left more than six hits in the sili
on and its transversemomentum is greater than 0.5 GeV. This still leaves us with many possibilities forthe numerator. Obviously, a tra
k 
ounting for the numerator has to be found at all.A tra
k is 
onsidered found if it 
an be uniquely mat
hed to a Monte Carlo parti
levia its sili
on hit 
ontent. Using this minimal de�nition the OI eÆ
ien
y is as highas 98.2% in the worst 
ase s
enario of t�t Monte Carlo with merged-in minimum biasevents. One 
an impose more stringent requirements for the numerator like requiringsome or all tra
k parameters to be well re
onstru
ted. An elaborate study of the OIeÆ
ien
y using various numerator de�nitions and Monte Carlo samples 
an be foundin [19℄.While the transverse momentum resolution is dominated by the COT the a

ura
yof the position estimate 
lose to the primary intera
tion point is dominated by themeasurements in the sili
on. The tra
ks found by the OI tra
king algorithms 
ombinethese two advantages. They inherit the ex
ellent momentum resolution from the COTtra
k and provide an impa
t parameter and z-position resolution of Æd0 � 10�m andÆz0 � 50�m, respe
tively.Sili
on Stand-alone Tra
king.|The OI tra
king 
an not exploit the full potential ofthe sili
on dete
tor. It inherits the �-dependen
e of the re
onstru
tion eÆ
ien
y fromthe COT tra
king: tra
ks are only found up to j�j � 1. The purpose of the sili
onstand-alone tra
king (SiSa) is to re
over tra
ks in the forward region 1 < j�j < 2 andtra
ks in the 
entral region that have too low momentum to traverse the entire COT.The sili
on hit sear
h in the OI tra
king is based on well established COT tra
ksthat are unlikely to be fakes. In the 
ase of SiSa tra
king we are not in su
h a
omfortable position. The helix hypothesises seeding the hit sear
h have to be formedfrom 
ombinations of sili
on hits alone. This introdu
es a mu
h higher risk of 
reating
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k Finding 37fake tra
ks. Furthermore, the number of possible tra
k seeds 
an be
ome very large,
reating a 
ombinatorial problem. It is hen
e ne
essary to use all a priori availableinformation to reje
t fake seeds as soon as possible. This requirement determines thedesign of the re
onstru
tion algorithm.In order to form a tra
k seed, �ve helix parameters have to be 
omputed from a
ombination of sili
on hits. Three axial measurements are needed to determine the r-�-parameters C d0 and �0. Fixing 
ot(�) and z0 requires two additional z measurements.In prin
iple one 
ould build every 
ombination of two z-hits and three axial hitsthat 
onstitutes a reasonable helix, i.e. a helix des
ribing a tra
k originating near theprimary intera
tion point. Next one would try to atta
h more hits to all the seeds and�nally perform a global optimisation. This, however, is simply not feasible. Alreadythe number of reasonable 
ombinations of three axial hits is far too high to 
arry outthis pro
edure in a reasonable amount of time. In addition, a 
ompletely independent
onsideration of z-hits and axial hits leads to many fake seeds. Consequently, theSiSa algorithm uses a di�erent approa
h. The 
ombinatorial problem is redu
ed byusing only two axial hits in di�erent layers and the beam position in the x-y-plane todetermine the seed r-� parameters. It should be noted that the beam position doesnot enter as a measurement. It is only used to form tra
k seeds. The fa
t that thetwo hits in an SAS 3D hit 
on�rm ea
h other is used to redu
e the fake rate: ea
h ofthe two axial seed hits is required to be a 
onstituent of an SAS 3D hit. Due to theambiguities in the 90Æ layers they are not suitable for this purpose. Thus only twoSVX II layers and the ISL 
an be used for seed 
onstru
tion. This 
an redu
e the tra
k�nding eÆ
ien
y in a non-perfe
t dete
tor. But given the high risk to produ
e faketra
ks, purity has pre
eden
e here. To further redu
e the fake rate the tra
k seeds arerequired to be 
ompatible with the z-position of one of the primary intera
tions in theevent. This redu
es the number of seeds signi�
antly and thereby redu
es the timespent in the SiSa tra
king 
onsiderably. Obviously, the z-verti
es have to be foundbefore the sili
on tra
king is run. This is a
hieved by a histograming algorithm basedon the COT z0 parameters and the seeds themselves[20℄.On
e the list of tra
k 
andidates is established it is sorted with respe
t to twoquality 
riteria. The seeds built from 3D hits in the SVX II are preferred over seedswith one or both hits in the ISL. The better z resolution in the SVX II allows fornarrower sear
h roads, thereby redu
ing 
ombinatori
s and in
reasing purity. These
ond 
riterion is the transverse momentum, high momentum tra
ks being preferredover low momentum tra
ks. The tra
ks seeds are pro
essed in the resulting order ofpreferen
e. The hit sear
h algorithm is very similar to the OI algorithm with theCOT tra
ks repla
ed by the tra
k seeds. There are additional tweaks that deal withthe impurities in the seed list and subtle systemati
 e�e
ts. On
e a tra
k 
andidateis a

epted, all hits on the tra
k are 
onsidered 
orre
tly used and all seeds sharinga hit with the tra
k are eliminated. In order to minimise the 
han
e of losing real
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kstra
ks, the seed pro
essing is performed several times. In the �rst round very strongquality requirements are imposed on the tra
ks, produ
ing a high purity sample. Then,round by round, the remaining seeds are pro
essed with weaker and weaker qualityrequirements. This pro
edure ensures good purity and eÆ
ien
y within a reasonablepro
essing time. A detailed des
ription of the SiSa algorithm and its performan
eunder various 
ir
umstan
es 
an be found in [19℄.Inside-out Tra
king.|While the SiSa tra
king re
overs forward and low momentumtra
ks in the sili
on, there are yet unused COT hits from parti
les that did not traversethe entire COT for one reason or the other. It is the purpose of the inside-out tra
king(IO) to make use of this information.The idea is to reverse the 
on
ept of OI tra
king. The fast Kalman-�tter 
omes intoplay again here. It is 
apable to deliver the best estimate of lo
al tra
k parameters atevery spa
e point in a very eÆ
ient way. Using the �tter, SiSa tra
ks are extrapolatedoutward to the inner wall of the COT. The parameter estimate at this position is thenused as a seed for a outward hit sear
h in the COT. After the COT hits 
ompatiblewith the seed are identi�ed they are �tted without the sili
on hits, yielding a COT-only parameter estimate at the COT inner wall. This \COT tra
k" together with thesili
on hits of the SiSa seed is then treated like an OI tra
k: using the Kalman-�tteron
e more, an inward �t is performed in order to determine the perigee parameters
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Figure 3.5: EÆ
ien
y of the sili
on tra
king algorithms versus �.and their 
ovarian
e matrix.The IO algorithm greatly improves the forward and low momentum tra
ks in twoways. Firstly, the pt resolution is improved 
onsiderably by adding COT hits to theSiSa tra
ks. Se
ondly, the fake rate is de
reased by dis
arding SiSa tra
ks whi
h 
annot be 
on�rmed in the IO tra
king[21℄.Summary.|By running the four tra
king algorithms in the order COT-OI-SiSa-IOCDF 2 tra
king makes best use of all available information while at the same timemaintaining a high purity. A fast Kalman-�tter implementation plays a 
ru
ial role in
onne
ting the COT to the sili
on measurements and in the sili
on pattern re
ognitionitself. The overall tra
king eÆ
ien
y as a fun
tion of pt and � is summarised in �gures3.4. and 3.5. The two parameters most relevant for physi
s analysis, C and d0,are re
onstru
ted with a resolution of �pt=p2t � 0:15% GeV�1 and Æd0 � 10�m,respe
tively.3.3 Tra
k FittingOverview.|Employing statisti
al methods in order to obtain the best estimate oftra
k parameters and their 
ovarian
e matrix for a given set of measurement points
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onstru
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le Tra
ksis 
alled tra
k �tting. At CDF 2 the statisti
al method used in tra
k �tting is alwaysan equivalent of �2 minimisation method. It is important that the tra
k �t providesa measure of �t quality in addition to the parameter estimate sin
e it is otherwiseimpossible to base any de
ision on the �t result.In the remainder of this 
hapter we are spe
i�
ally 
on
erned with tra
k �ttingin the CDF 2 sili
on dete
tor. The measurements entering the tra
k �ts are eitherposition measurements in the SVX II and ISL or the result of a COT tra
k �t, as inthe 
ase of OI and IO tra
ks.Contrary to what the above de�nition might suggest, tra
k �tting is also performedduring the pattern re
ognition. In this s
enario the set of measurements is not yet
omplete and the tra
k �t quality 
riterion helps to de
ide whether a hit should beadded to a tra
k. Espe
ially in the SiSa tra
king a very large number of hypothesishas to be tested. This makes a very fast �tter implementation a ne
essity.The se
ond s
enario of tra
k �tting is tra
k re�tting, i.e. the re-determination oftra
k parameters and their 
ovarian
e matrix without 
hanging the hit 
ontent of thetra
k. There are several reasons why it 
an be
ome ne
essary to re�t tra
ks. Themost 
ommon reason is a 
hange in parti
le hypothesis. For a given momentum, theenergy a parti
le loses due to its intera
tion with the dete
tor material depends on itsmass. The tra
k �t has to take this energy loss into a

ount and hen
e the �t resultdepends on the mass. The mass is not dire
tly measured by the tra
king dete
tors.Sin
e the majority of parti
les produ
ed in the 
ollision are pions the default masshypothesis is m�. But if one re
onstru
ts e.g. D0 ! K� �+ it is ne
essary to re�t thenegatively 
harged tra
k with a kaon hypothesis in order to get the D0 mass right.Another reason that makes it ne
essary to re�t tra
k is a 
hange in alignment ordete
tor understanding like an improved understanding of the sili
on hit resolution.While signi�
ant improvements of the dete
tor understanding be
ome rare over time,the alignment is always subje
t to 
hange. The relative position and orientation ofthe sili
on sensors and the lo
ation of the sili
on dete
tor with respe
t to CDF 2
oordinate system 
hange with time. In most 
ases these 
hanges are very small. Butthe high resolution of the lo
al position measurements in the sili
on dete
tor makeit ne
essary to use the best available alignment for tra
k re�tting. For a tra
k-basedanalysis this means that all tra
ks should be re�tted, even for the default m� masshypothesis. An additional, more unpleasant, reason for re�tting tra
ks is the dis
overyof a bug in the �tter implementation. Again, all this makes it desirable to performthe tra
k �ts in as short a time as possible.Given the manifold s
enarios of tra
k �tting, a versatile tra
k �tter is needed thatperforms equally well and fast in all of them. The Kalman-�tter des
ribed in thefollowing se
tion is ideally suited for this purpose.The Kalman-Fitter.|A Kalman-�tter is a progressive �tter based on the prin
iple



3.3. Tra
k Fitting 41of a Kalman-�lter. A progressive �tter is a �tter that does not expli
itly refer topreviously applied measurements or 
orre
tions when a new measurement or 
orre
tionis in
orporated into the �t. All measurements and 
orre
tions are applied in a step-by-step manner. In ea
h step the starting point is the 
urrent status of the �t whi
himpli
itly 
ontains all the information from previous steps. Progressive �tters 
an beimplemented mu
h more eÆ
iently than non-progressive �tters. This is very similarto the underlying prin
iple of the Kalman-�lter. The original purpose of the Kalman-�lter was to provide a signal �ltering method in ele
tri
al engineering. It was �rstdes
ribed by R. E. Kalman in 1960[22℄.The basi
 idea is the following. Suppose we want to measure a time dependentquantity x(t). For ea
h time t there is a true value xtrue(t). What ever the means ofmeasuring x are, they 
an never be perfe
tly a

urate. Consequently ea
h measure-ment x(t) has an asso
iated error �(t). The error quanti�es our la
k of informationabout the true value xtrue(t). Now suppose a 
ertain time span �t passes before thenext measurement. Just before the next measurement is performed we know less aboutxtrue(t + �t) than we knew about xtrue(t) after the measurement at time t. This isbe
ause x depends on time and we had to make a proje
tion into the future. Thepro
edure used for this proje
tion together with the underlying assumptions is 
alledthe transport model. Our non-perfe
t knowledge of xtrue(t) and un
ertainties in thetransport model both 
ontribute to the in
reased un
ertainty at the time t+�t. Afterthe new measurement we have to update our overall estimate using the proje
tion andthe new measurement. Provided the errors are reasonable, the best way to 
ombinethese two informations is an error-weighted mean. This 
ombination always has asmaller un
ertainty than the single estimates entering it. This simply expresses thefa
t that it 
ontains more information. The whole pro
edure is ni
ely illustrated in[19℄. Note that it is not ne
essary to keep all the single measurements to 
arry out thispro
edure. All information 
olle
ted at the time t is impli
itly 
ontained in x(t) and�(t). It 
an be proven that this pro
edure is 
ompletely equivalent to a least square �tto all measurements. To perform the latter, however, it would be ne
essary to re
ordall measurements.The Kalman-�tter for parti
le tra
ks works very similar. Nevertheless there aresome important di�eren
es. First of all there is more than one parameter to be de-termined. Instead we have a ve
tor ~x of the �ve tra
k parameters. Sin
e there are
onsiderable 
orrelations between the parameters, the un
ertainties have to be de-s
ribed by a �ve dimensional 
ovarian
e matrix. Next the measurements are notordered by time but rather by their distan
e from the z-axis, r, following a parti
lespath from the beam outward. But these two di�eren
es are not fundamental. Afterall they just represent a 
hange in the dimensionality of parameter spa
e and in the
hoi
e of the ordering parameter. There is one fundamental di�eren
e, however. AKalman-�lter requires the transport model to be linear. The transport pro
edure in
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x(r)of backward fit
error estimate

referenceFigure 3.6: Illustration of forward vs. ba
kward Kalman-�t.tra
k �tting involves the 
omputation of the lo
al parameters at a radius r2 fromthe given parameters at another radius r1. For 
urved traje
tories this is a nonlineartransformation. Thus the assumption of linearity is violated in 
harged parti
le tra
k�tting. In order to apply the Kalman-�lter prin
iple the transport model has to belinearised. This is a
hieved via a Taylor series expansion about a referen
e point inparameter spa
e: instead of the tra
k parameters themselves the deviation from areferen
e traje
tory is �tted. The deviation �~x(r) = ~x(r)�~x(r)referen
e is the distan
eof the �tted tra
k and the referen
e traje
tory in parameter spa
e. Terms of orderO(�~x(r)2) or higher are dropped from the expansion. The transport model for thedeviation is then linear and the Kalman-�lter prin
iple 
an be applied. This approa
his based on the assumption that the deviation is always suÆ
iently small to allowfor a linear approximation. For very low momentum tra
ks with large energy loss ormultiple s
attering this assumption does not hold sometimes. To a

ount for this thereferen
e traje
tory is reset to the �t result after ea
h �t step, ensuring �~x(r) = ~0.This is only done in tra
k re�tting and in the �nal �t after the pattern re
ognition.resetting the referen
e also in pattern re
ognition would require the re
omputation ofall subsequent material interse
tions in ea
h sear
h bran
h { a far too time 
onsumingpro
edure, even in the highly eÆ
ient geometry framework des
ribed in the followingse
tions.Given that all the measurements are available right from the start one 
ould askwhat is the point in applying a Kalman-�lter based �t algorithm. The answer isthere are 
ertain tasks that 
an be performed mu
h more eÆ
iently 
ompared to aany non-progressive �tter, namely the ones where a de
ision has to be made. Thiso

urs most frequently in the hit sear
h stage of the sili
on pattern re
ognition. Forea
h interse
tion of a tra
k with a sili
on sensor there 
an be several hits 
ompatiblewith the tra
k hypothesis. It has to be de
ided whi
h hits are added to the tra
k.A non-progressive �tter would have to perform a �t to all hits, i.e. the hit 
urrently
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k Fitting 43evaluated and all previously added hits, for ea
h of the hits possibly 
ompatible withthe tra
k. A Kalman-�tter based algorithm on the other hand does not have tore
onsider the previously added hits. It just in
orporates the new measurement intothe �t by 
omputing a weighted mean.A Kalman-�tter is also the more natural 
hoi
e when the tra
k parameter esti-mate has to 
omputed at an arbitrary spa
e point along the tra
k. The result of theKalman-�t only 
ontains all information after all measurements and 
orre
tions havebeen in
orporated, i.e. after the last �t step. To whi
h spa
e point the last �t step
orresponds depends on the dire
tion of the �t and whether all measurement are used.If progressive �t is performed outward from the beampipe to the COT inner wall it is
alled a forward �t. It is forward in the sense that it follows the 
ight dire
tion of aparti
le 
oming from the primary intera
tion point. In a forward �t the last �t step
orresponds to the COT inner wall where it yields the best parameter estimate. Aforward �t is most suitable if a sili
on tra
k is to be extrapolated outward into theCOT like in the IO tra
king. If the dire
tion of the �t is reversed it is 
alled a ba
kward�t. In this 
ase the best parameter estimate is obtained inside the beampipe. Thetwo 
ases and how the parameter un
ertainties evolve in ea
h of them are illustratedin �g. 3.6. If the ba
kward �t is not 
arried out 
ompletely one obtains the bestparameter estimate at the spa
e point where it stopped. This is useful when re
on-stru
ting long lived parti
les like KS. A KS 
an de
ay in the middle of the sili
ondete
tor. In this 
ase the measurements and material 
orre
tions inward from theKS de
ay vertex should be ex
luded from the tra
k �t of the de
ay produ
ts1. Thebest parameter estimate at an arbitrary spa
e point 
an be obtained by applying thefollowing pro
edure. First the �t is performed in both dire
tions and the results atea
h �t step are re
orded. Then the best parameter estimate at a given spa
e pointis obtained by simply 
omputing the weighted mean of the forward and ba
kward �tresults of the 
orresponding �t step2.A full-featured Kalman-�lter based tra
k �tter is implemented in the Tra
kingKalpa
kage of CDF 2 o�ine software[23℄. This implementation aims for 
omputing eÆ-
ien
y wherever possible. All 
al
ulations for the parameter transport model, param-eter 
onversion, matrix inversions et
. were 
arried out analyti
ally[19℄. The resultswere then implemented in C++, taking 
are to minimise any 
omputational over-head in the pro
ess. This extremely fast implementation is used in sili
on patternre
ognition algorithms and for re�tting tra
ks in all tra
k-based analyses at CDF 2.1If the 
andidate represents a real KS all measurements inward from the de
ay vertex 
an onlybe wrong sin
e it is impossible that the outward bound de
ay produ
ts have left hits inward fromthe vertex.2In this 
ase the referen
e traje
tory must not be reset. It has to be the same for both �t dire
tions,limiting the method to \well behaved" tra
ks.
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onstru
tion of Charged Parti
le Tra
ks3.4 Dete
tor Modelling and Material Des
riptionsIntrodu
tion.|An a

urate and eÆ
ient dete
tor model is a ne
essary pre
ondition ofa fast �tter implementation. There are two major aspe
ts of the dete
tor geometry thathave to be represented in the re
onstru
tion software: the exa
t position of all a
tive
omponents and the properties of the passive material and its distribution. Physi
allyea
h a
tive dete
tor 
omponent is always also passive material { unfortunately we 
annot build immaterial measurement devi
es. From the software representation pointof view this is not relevant, however. The two sides of the sili
on sensors where themeasurements o

ur 
an be modelled as in�nitely thin surfa
es. The �tter just has toknow their exa
t lo
ation and orientation in order to relate the lo
al measurements tothe CDF 2 
oordinate system, yielding a measurement of one or more tra
k parameters.This model of the a
tive 
omponents has to be organised in a way that allows to �ndinterse
tions of heli
es and sensor surfa
es as qui
kly as possible. Otherwise the sili
onpattern re
ognition would be slowed down 
onsiderably, no matter how fast a �tterimplementation is employed. The material aspe
ts of the sensors as well as the passivedete
tor material 
an then be modelled independently. It is even possible to 
ompletelyde
ouple the des
ription of the passive material properties from the physi
al dete
tor
omponents. This allows to handle the passive material e�e
ts in a very eÆ
ient yethighly a

urate way.On the other hand it is ne
essary to maintain a detailed model of all dete
tor
omponents for simulation purposes. In order to ensure 
onsisten
y the other, morespe
ialised, models must be derived from this fully detailed des
ription in su
h a waythat 
hanges to the geometry and material properties are propagated automati
ally.Independently maintained dete
tor models for spe
i�
 purposes have to be avoided. Ageometry model obeying all these requirements is des
ribed in the following se
tions.A more detailed dis
ussion of the te
hni
al aspe
ts of the passive material model isgiven in appendi
es A and C.Complete Geometry Des
ription.| The 
omplete CDF 2 geometry des
ription is or-ganised in a tree-like hierar
hi
al stru
ture of so-
alled dete
tor nodes and volumes[24℄.The dete
tor is subdivided in its major 
omponents like the muon system, 
alorimetryand the sili
on vertex dete
tor. These are the nodes. The nodes are 
ompletely inde-pendent of ea
h other. This allows dete
tor experts to model one 
omponent withouthaving to 
onsider properties of other 
omponents. Internally the dete
tor nodes areorganised in volumes. The volumes 
orrespond to smaller 
omponents like half laddersin the sili
on dete
tor. There are two kinds of volumes: logi
al and physi
al volumes.A logi
al volume is a bran
hing point or leaf in the geometry tree. It only knows aboutits position, its orientation and the 
hild and parent volumes in the geometry tree.For ea
h logi
al volume there is an asso
iated physi
al volume. The physi
al volume
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riptions 45knows about its exa
t dimensions and material properties. The rationale behind allthis is the fa
t that many dete
tor 
omponents have exa
tly the same properties. Forexample the very same half ladder appears 72 times with di�erent orientations andpositions in a given layer of the SVX II. The geometry des
ription is implementedin C++. Consequently the node and volume 
on
epts dire
tly translate to C++
lasses. CDF 2 still uses GEANT 3[25℄ for dete
tor simulation. Sin
e GEANT 3 isimplemented in FORTRAN the simulation 
an not a

ess the geometry des
riptiondire
tly. The GEANT 3 geometry is generated automati
ally from the C++ geometry,thereby ensuring 
onsisten
y.It is a major a
hievement of CDF 2 that one geometry des
ription is used 
onsis-tently in simulation and re
onstru
tion. However, the design of this geometry des
rip-tion emphasises simulation over re
onstru
tion. Here we are espe
ially 
on
erned withthe des
ription of the sili
on dete
tor as it is implemented in the Sili
onGeometrypa
kage of CDF 2 o�ine software[26℄. In tra
k �nding and tra
k �tting we frequentlyfa
e the problem of path �nding: for a given helix we have to �nd the interse
tionswith the sili
on sensors in order to atta
h the measurements to the �t. A tra
k isusually pursued through the dete
tor inside-out or outside-in, i.e. along in
reasing orde
reasing distan
e to the z-axis. The 
ylindri
al symmetry of the real dete
tor 
anhelp a lot in performing this task. But the geometry des
ription does not expli
itelyexpress this symmetry. It does not 'know' about the layer stru
ture of the sili
ondete
tor. There are interfa
es that hide this fa
t from the user. But it does not helpto brush the problem under the 
arpet synta
ti
ally. If not all available informationis exploited, path �nding will always be slow. This problem is addressed by the a
tive
omponent model des
ribed in the next se
tion.A
tive Dete
tor Component Model.| In this se
tion we will dis
uss a meta stru
tureimposed upon the generi
 geometry des
ription. This stru
ture was designed to solvethe path �nding problem mentioned in the previous se
tion. It is espe
ially tailored tothe needs of the fast Kalman-�tter des
ribed in se
tion 3.3. The basi
 idea is to makethe geometry des
ription aware of the symmetries of the real dete
tor, espe
ially thelayer and �-wedge stru
ture.The meta stru
ture is implemented by the KalDete
tor 
lass in the Sili
onGeo-metry pa
kage. Just like the generi
 dete
tor des
ription it features the 
on
ept of ageometry tree. Consequently there is a 
orresponding 
lass 
alled KalDete
torNode.Despite its name the semanti
s of this 
lass is rather that of a 
ombination of log-i
al and physi
al volumes than a that of a node in the generi
 des
ription3. Ea
hKalDete
torNode represents a half ladder. It knows about its orientation and lo-3In hindsight we would have 
hosen the name more wisely. This illustrates another 
ommonproblem in software development. It is hard to �nd the proper names for 
lasses and even lo
alvariables. One should put 
onsiderable e�ort in thinking about names. Doing so usually yields someimportant insights. This is one of the { unfortunately many { pla
es were we failed to do so.
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ation and all geometry properties. The geometry properties in
lude the half lad-der dimensions as well as the orientation of the sili
on strips and the stereo angle,where appli
able. A KalDete
torNode is a KalAlignmentNode by inheritan
e. This
on
ept was introdu
ed to allow for alignment studies using the fast Kalman-�tter.The KalAlignmentNodes are organised in a tree. The tree is managed by the 
lassKalAlignmentTree. Not all KalAlignmentNodes have to be a KalDete
torNode.This allows to represent aspe
ts like the barrel stru
ture in the geometry des
rip-tion. In fa
t it allows to group arbitrary sets of KalAlignmentNodes (and hen
eKalDete
torNodes) and hook them to one spa
e point, possibly involving rotationsand translations of the whole group. The only restri
tion being that ea
h node hasexa
tly one parent node. The KalAlignmentTree takes 
are that the lo
ations andorientations of all nodes are updated when a new node is introdu
ed into the geome-try tree or the position and/or orientation of an existing node is modi�ed. The mostsimple geometry tree is one master node at the origin and all KalDete
torNodes rep-resenting half ladders dire
tly atta
hed to it. This is the default 
on�guration. It isalso virtually the only 
on�guration 
urrently in use. The positions and orientationsof the half ladders are initialised from the generi
 geometry des
ription, making sureeverything is 
onsistent. This, and the fa
t that the tree stru
ture is very similarto the one implemented in the generi
 geometry des
ription, is the reason why thisimplementation is also known as the KAL proxy.
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SVX II, Layer 4Figure 3.7: Illustration of the layer stru
ture provided by the KALproxy. Overlap regions are handled naturally.
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tor Modelling and Material Des
riptions 47The KalDete
tor knows more, however. It is not ignorant about the dete
torslayer and �-wedge stru
ture. After the tree of half ladders is initialised an additionalstru
ture is superimposed by invoking KalDete
tor::stru
tureGeometry() . Thelayer stru
ture is built �rst. All half ladders are sorted with respe
t to their minimumdistan
e to the z-axis. The resulting sorted list is then s
anned starting with the halfladders with the smallest minimum radius. The half ladders are added to a sublist
onstituting the 
urrent layer until a signi�
antly di�erent radius is en
ountered. Inthis 
ase a new layer is started. The pro
edure is repeated until the end of the sortedhalf ladder list is rea
hed. Note that the half ladders belonging to a layer are notrequired to have exa
tly the same minimal radius. This is be
ause exa
t equality isgenerally not a good 
on
ept when dealing with 
omputer numeri
s. The half laddersin one layer are rotated about the z-axis. This leads to small deviations from thenominal radii due to the limited a

ura
y of implementation of the trigonometri
fun
tions. To a

ount for this the radii in one layer are allowed to di�er at the levelof 0.05%. This is large enough to a

ount for rounding errors and suÆ
iently small toensure the 
orre
t layer stru
ture. There is one 
aveat, however. In the real dete
torthe half ladders are not at their nominal positions. This misalignment 
an lead toradial shifts large enough to make the above pro
edure fail. Using an even moresloppy de�nition of equality does not help sin
e it leads to mixed-up layers. Thus thelayer stru
ture has to be built before the alignment is applied.The resulting layer stru
ture makes it easy to a

ess all half ladders belonging toa given layer. In addition, the layers in the KAL proxy re
e
t the real dete
tor stru
-ture and not just an abstra
t numbering s
heme. The generi
 geometry des
riptiononly knows about the layer 
on
ept introdu
ed in se
tion 2.2. This has unpleasant
onsequen
es. In this generi
 numbering s
heme the half ladders in one SVX II layero

ur at two di�erent radii and overlap in regions around � = �=6 � (n+ 1=2); n 2 Z.This is illustrated in �g. 3.4. This leads to problems in a typi
al situation duringpattern re
ognition. When the tra
k �nding algorithm looks for 
ompatible hits atall half ladders in a generi
 layer things 
an get 
ompli
ated. There 
an be morethan one 
ompatible hit but it is not 
lear what this means. Two 
ompatible hits 
anbe mutually ex
lusive or they 
an a
tually belong both to the tra
k, depending onwhether the situation o

urs due to the � overlap or not. In ISL layer 6 the problemis even worse. Layer 6 
onsists of three barrels with two di�erent mean radii whi
hoverlap in z, leading to up to four-fold overlap in �. In the generi
 geometry, awkwardworkarounds are ne
essary to deal with this problem. In the KAL proxy geometry, onthe other hand, all overlap regions are handled naturally.After the layer stru
ture has been built the layers are subdivided in �-wedges bya very similar pro
edure. Finally the half ladders in the �-wedges are organised intoz-ranges. The layer, �-wedge and z-range stru
tures are all sorted lists and 
an besear
hed very eÆ
iently using a binary sear
h algorithm. The KalDete
tor 
lass
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onstru
tion of Charged Parti
le Tra
ksprovides 
onvenient and eÆ
ient interfa
es to �nd all half ladders rea
hing inside avolume de�ned by r, �, z and the un
ertainties Æ� and Æz. The meta stru
ture andinterfa
es provided by the KAL proxy emphasise the re
onstru
tion use 
ase of thegeometry des
ription. It is most suitable for tra
k �nding and tra
k �tting.Passive Material Model.| So far we were only 
on
erned with a
tive dete
tor 
om-ponents, i.e. sili
on sensors. But the sili
on tra
king volume at CDF 2 also 
ontainsa 
onsiderable amount of passive material. The 
orre
t treatment of this material is
ru
ial for the 
orre
t determination of tra
k parameters and their errors by the tra
k�tting algorithms, espe
ially for low momentum tra
ks[27℄. Consequently, this is alsotrue for the resolution and a

ura
y of tra
k momenta, and hen
e of re
onstru
tedparti
le masses. Furthermore, there are timing 
onstraints sin
e all tra
ks have to bere�tted for ea
h parti
le hypothesis in a tra
k based analysis. The task then is tohandle the passive material e�e
ts as a

urate and fast as possible.The main e�e
ts from passive material are energy loss (dE=dx) and multiple s
at-tering. Energy loss of minimum ionising parti
les in solids 
an be des
ribed by theBethe-Blo
h formula[28℄:dE=dx = CdE=dx � 1�2 �ln�2me
2�2
2I0 �� �2� (1)Were �, 
 and me have their usual meaning, dx is the pathlength in the material andCdE=dx and I0 are material properties. The energy loss dire
tly a�e
ts the 
urvature ofa 
harged parti
les traje
tory in the magneti
 �eld. Due to 
orrelations, this also hasan impa
t on the other tra
k parameters when they are propagated between di�erentradii.Multiple s
attering is governed by the integrated radiation length in the material:dRL = dx=X0; [X0℄ = 
mradiation length (2)Where dx is again the pathlength in the material and X0 is a material property. Sin
eits mean e�e
t vanishes multiple s
attering does not dire
tly a�e
t tra
k parametersbut it in
reases the un
ertainty of the parameters.Inspe
tion of equations (1) and (2) yields the following list of ingredients neededto handle the passive material e�e
ts:� material properties{ CdE=dx, the energy loss 
onstant{ I0, the mean ex
itation potential{ X0, spe
i�
 radiation length
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tor Modelling and Material Des
riptions 49� a parti
le hypothesis (a mass is needed to 
ompute � and 
 from the momentump)� dx, the pathlength in the dete
tor 
omponents traversed by the traje
toryObtaining the material properties is trivial on
e the problem of �nding the traverseddete
tor 
omponents is solved. The sili
on tra
king volume 
ontains a large numberof di�erent dete
tor 
omponents in a variety of shapes and orientations. Findinginterse
tion points and path lengths under these 
onditions is a highly non-trivialtask. Only in a small number of 
ases the interse
tions of heli
es with geometri
alvolumes 
an be 
al
ulated analyti
ally, namely for planes and 
ylinders parallel to thehelix axis and for planes perpendi
ular to it. In all other 
ases one has to retreat tonumeri
al solutions. But these are inherently slow, violating one of our requirements.Several solutions to this problem were proposed and implemented in CDF 2 of-
ine software. They range from a 
omplete numeri
al solution that uses GEANT inre
onstru
tion to a solution that only 
onsiders the 
omponents that 
an be handledanalyti
ally and a

ounts for the missing material by introdu
ing 'phantom material'.In a sense using GEANT is the perfe
t world: it provides full 
onsisten
y with the
omplete material des
ription and is highly a

urate. It is, however, far too slow tobe used in everyday analyses. A detailed des
ription of the various solutions and a
omparison of their performan
e 
an be found in appendix B. The only fully satis-fa
tory solution is provided by the SiliMap 
on
ept introdu
ed in this se
tion. TheSiliMap solution aims for the high a

ura
y provided by GEANT while simultaneouslyproviding fast path�nding.The basi
 idea is to trade time for memory: GEANT has to step through a givendete
tor 
omponent ea
h time it is hit by a tra
k. Ea
h time it does so the samematerial properties are retrieved by this time 
onsuming pro
ess. The timing 
an beimproved 
onsiderably by performing the GEANT stepping only on
e and storing theresult.If this was done on the level of dete
tor 
omponents as they appear in the detailedgeometry, nothing would be gained 
on
erning the path�nding problem. Fortunately,the information on the 
omponent's shape et
. is not relevant for the material in-tegration. This enables us to organise the storage in a way that makes path�ndingtrivial: a binned three dimensional map. Figure 3.8 illustrates this 
on
ept. Thesili
on tra
king volume, i.e. r < rCOTWall = 40:6 
m, jzj < 100 
m, is divided in binsin r, � an z. While the � and z bins in ea
h r bin (map layer) are equidistant, thelayer boundaries are 
hosen suitable for the needs of the pattern re
ognition and the�tter. This organisation makes path�nding easy: on
e the map layer is known, thebin indi
es 
an be dire
tly 
omputed from the � and z 
oordinates.The binning resolution must be suÆ
iently high to re
e
t the often rapid 
hangesin material properties. On the other hand, de
reasing the bin size rapidly in
reases
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Figure 3.8: The 
on
ept of SiliMap is to produ
e a binned map ofthe passive material properties using GEANT. Ea
h map bin holdsthe index of a des
ription of the average material properties at theposition of the bin. Due to the high symmetry of the sili
on dete
torseveral bins have the same average material properties. In the realmap the bin size is 
onstant in r� rather than �.the memory 
onsumption. This makes it ne
essary to exploit the symmetry of thedete
tor. Ea
h bin is s
anned at di�erent positions with GEANT to obtain the averagematerial properties in its volume, i.e. the s
anning resolution is even higher than thebinning resolution. The spatial resolution a
hieved by this pro
edure is illustrated byusing SiliMap to integrate the radiation lengths along traje
tories perpendi
ular tothe z-axis. The resulting plot is shown in �g. 3.9. It ni
ely re
e
ts the features of thesili
on dete
tor geometry.The high granularity of the binning millions of traje
tories whi
h have to steppedthrough the dete
tor by GEANT. To avoid the unne
essary invo
ation of this verytime 
onsuming pro
ess the results have to be stored persistently. This raises thequestion how the map should be distributed to users. These te
hni
al issues and andhow they are resolved by the SiliMap implementation are dis
ussed in detail in theappendi
es A and C.
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Figure 3.9: Integrated radiation lengths in the CDF 2 sili
on dete
tora

ording to SiliMap. The plot shows the integrated radiation lengthsalong traje
tories perpendi
ular to the z-axis.Summary.| There are numerous requirements that have to be met by a good ge-ometry des
ription. The most obvious was a
tually not dis
ussed so far, namely the
onsisten
y of the geometry des
ription and the real dete
tor. We did not dis
uss itbe
ause it is not a software implementation issue. Nevertheless the CDF 2 
ollabora-tion has put 
onsiderable e�ort in ensuring this 
onsisten
y and the software model ismeanwhile an almost perfe
t des
ription of the real dete
tor.Given that, we have to ensure 
onsisten
y of the simulation and the re
onstru
tionmodel and provide suitable and eÆ
ient interfa
es for all use 
ases. This is a
hieved byusing a 
omplete geometry des
ription as the basis of a number of derived proxies andinterfa
es. The KAL geometry proxy in 
onjun
tion with the SiliMap model of thepassive material provide a highly a

urate and eÆ
iently interfa
ed geometry modelfor tra
k �nding and �tting.





Chapter 4Correlation AnalysisOutline of the Analysis | Re
onstru
tion of 
harmed Mesons: tra
k sele
tion 
riteria;de
ay re
onstru
tion; D meson mass spe
tra | Correlation Analysis: 
on
ept of theanalysis; toy Monte Carlo study | Eviden
e for 
orrelated Charm Produ
tion; eviden
efor 
orrelated D0 �D0 produ
tion; angular distributions4.1 Outline of the AnalysisThe goal of the analysis is to establish eviden
e for the 
orrelated produ
tion of
harmed meson pairs for the �rst time at a hadron 
ollider. To this end it is �rstne
essary to extra
t the D meson signals from the huge dataset 
olle
ted by the TwoTra
k Trigger. Three D meson de
ay modes are 
onsidered, namely D0 ! K��+,D+ ! K��+�+ and D�+ ! K��+�+s . The signals are established by 
ombiningtra
ks and �tting them to a 
ommon vertex. Combinations with invariant massesinside a 
ertain window around the known meson masses[1℄ are then 
onsidered 
an-didates. Possible pairs of 
orrelated mesons are 
onstru
ted by 
ombining the four-momenta of two mesons, again by applying a vertex �t. This pro
edure was imple-mented in a CDF 2 o�ine analysis job[29℄[30℄ using the C++ programming language.The analysis libraries and exe
utable were 
ompiled and linked against release 5.3.4 ofCDF 2 o�ine software[31℄. The analysis was run on the Two Tra
k Trigger dataset asof November 28th 2004. This dataset has a total size of 13,265.407 GB, 
orrespondingto 270,103,586 events and � 481pb�1 of integrated luminosity. All four-momenta andadditionally required data resulting from this pro
edure were written to disk for lateranalysis using the ROOT data analysis framework[32℄. The �nal analysis was doneusing ROOT 4.00/04 
ompiled with g

 3.2 on a SuSE Linux 8.1 system running Linuxkernel 2.4.27 on an AMD Athlon XP 2000+ CPU. The sear
h for 
orrelated produ
-tion was performed in this �nal step of the analysis. In order to proof the 
on
ept ofthe 
orrelation analysis method a toy Monte Carlo study was 
ondu
ted. The varioussteps of the analysis will be des
ribed in detail in the following se
tions.53



54 Chapter 4. Correlation Analysis4.2 Re
onstru
tion of 
harmed MesonsTra
k Sele
tion Criteria.| The analysis at hand is 
ompletely tra
k based. No in-formation from dete
tor 
omponents other than the tra
king system are used. Thismakes it ne
essary to impose some quality requirements on the tra
ks entering theanalysis. Quality here more or less dire
tly translates to purity, i.e. fake tra
ks not
orresponding to a real parti
le are to be avoided. In addition, the parti
le traje
toriesshould be well behaved. Tra
ks with large kinks from multiple s
attering are usuallynot well re
onstru
ted and have a higher probability of 
ontaining wrong hits.Several variables are 
orrelated with tra
k quality. First of all there is the tra
kingalgorithm. OI tra
ks whi
h are required to traverse the entire COT tend to be ofhigher quality than SiSa tra
ks that are based on sili
on measurements only. AlsoCOT tra
ks without sili
on information are of lower quality in the sense that theydo not provide a high resolution position measurement near the primary intera
tionpoint. In general high momentum tra
ks 
an be re
onstru
ted with higher purity.But we 
an not a�ord to impose stringent momentum requirements on all tra
ks sin
ewe want to re
onstru
t D�+ ! K��+�+s whi
h 
ontain a soft pion (�s) in the �nalstate. The most important remaining variable is the number of hits on the tra
k.The higher the number of hits 
ompatible with a single tra
k hypothesis the lower isthe probability that this hypothesis is a fake tra
k. These 
onsiderations lead to thefollowing requirements for tra
ks entering the analysis:� OI tra
ks with at least 15 axial and 10 stereo COT hits� IO tra
ks with at least 8 axial and 3 stereo COT hits� at minimum three axial sili
on hits� transverse momentum greater than 500 MeVSili
on-standalone tra
ks are omitted be
ause those that do not give rise to IO tra
ksare in general of low quality. All tra
ks ful�lling these requirements are re�tted withK and � parti
le hypothesis using the fast Kalman-�tter and material model des
ribedin 
hapter 3. As re
ommended by the CDF 2 B-physi
s group, the magneti
 �eld aswell as the COT tra
k 
ovarian
e matrix and 
urvature were 
orre
ted following thepro
edures do
umented in [33℄ and [34℄. Sin
e L00 was not well understood at thetime the data used in this analysis was pro
essed the tra
ks in the dataset 
ontainno L00 hits. In order to further improve the position resolution 
lose to the primaryintera
tion point a dedi
ated L00 pattern re
ognition was performed prior to the tra
kre�ts by using the L00AddAndRefit interfa
e[35℄[36℄[37℄. No L00 hits are required,however. All su

essfully re�tted tra
ks meeting the above requirements enter thenext stage of re
onstru
tion des
ribed below.



4.2. Re
onstru
tion of 
harmed Mesons 55De
ay Re
onstru
tion.| TheD mesons are re
onstru
ted by building all possible tra
k
ombinations 
ompatible with de
ay produ
ts for a given 
hannel and then performinga vertex �t. The implementation of this pro
edure makes heavy use of a toolkit forB physi
s analysis available in CDF 2 o�ine software[38℄. This toolkit introdu
es
on
epts like stable and de
aying parti
les as well as de
ay 
hains. It also allows totransparently apply various algorithms to parti
les and de
ay 
hains, thereby greatlyfa
ilitating ex
lusive analyses.The most simple 
hannel is the D0 ! K��+ two body de
ay. The re�tted tra
ksare organised in four lists of stable parti
les, two for the two possible 
harges of theK mesons and two for the � mesons. All possible 
ombinations of negatively andpositively 
harged tra
ks are 
reated by a simple nested loop algorithm. The outerloop runs over the K� list. For ea
h K� 
andidate a se
ond loop runs over all �+
andidates. In this inner loop the de
aying parti
les are 
onstru
ted by 
ombining thetwo stable parti
les. Most of the 
ombinations 
onstru
ted this way do not 
orrespondto realD0 mesons. Many of these wrong 
ombinations 
an be dis
arded already at thisstage be
ause their invariant mass is far o� the known D0 mass. The best estimate ofthe invariant mass is available only after a full vertex �t was performed. Sin
e vertex�ts are expensive in terms of 
omputing time a rough estimate of the invariant massis 
omputed from the tra
k four-momenta. The invariant mass 
omputed this wayhas a large un
ertainty sin
e the tra
k momenta are taken at the perigee. Thus onehas to be 
areful to 
ut not too hard on this quantity. Candidates are a

epted if theinvariant mass 
omputed from the tra
k momenta is inside a 160 MeV window 
entredat the known D0 mass. For these 
andidates the K� and �+ tra
ks are �tted to a
ommon vertex using the CTVMFT vertex �tter[39℄. This vertex �t yields the vertexposition and the four-momentum of the de
aying parti
le as well as the 
orresponding
ovarian
e matri
es. With a better estimate of the invariant mass now available thea

eptan
e window is narrowed down to 100 MeV. Only 
ombinations with su

essfulvertex �ts and invariant masses inside this window are a

epted as D0 
andidates.Finally the two tra
ks in the �nal state are required to form a trigger pair. Thismeans they have to resemble two tra
ks that would pass the Two Tra
k Trigger. Therequirements are not exa
tly the same as for the Two Tra
k Trigger. Only the impa
tparameter and transverse momentum requirements are applied, i.e. 100 �m < jd0j <1 mm, pt > 2 GeV andP pt > 5 GeV. This trigger pair requirement greatly improvesthe signal to ba
kground ratio and removes some systemati
s that would otherwise
ompli
ate the 
orrelation analysis des
ribed in se
tion 4.3.In the 
ase of the D+ ! K��+�+ three body de
ay the situation is slightly more
ompli
ated. The basi
 algorithm is the same as in the D0 ! K��+ 
ase with oneinner loop added for the se
ond pion. A new problem arises be
ause the two pions havethe same 
harge. If one naively builds all 
ombinations there will be some 
ontainingthe same tra
k twi
e. This 
an be avoided by arranging the loops appropriately. In



56 Chapter 4. Correlation Analysisorder to be able to use some generi
 algorithms for re
onstru
ting multi body de
aysa di�erent solution was 
hosen, however. All re
onstru
ted 
harged parti
le tra
ks inan event have an unique identi�
ation number. The unwanted 
ombinations are then�ltered out by requiring that no tra
k identi�
ation number o

urs twi
e. Otherwisethe algorithm is the same as in the 
ase of D0, in
luding the requirement that two ofthe three tra
k in the �nal state form a trigger pair.The D�+ ! K��+�+s also has a three body �nal state. This suggests that thesame pro
edure as in the D+ 
ase should be applied. But sin
e D�+ de
ays resonantlyvia D0, i.e. D�+ ! D0(! K��+) �+s , a di�erent approa
h was 
hosen. Instead of
ombining three tra
ks, the algorithm 
ombines already re
onstru
ted D0 
andidateswith positively 
harged tra
ks 
orresponding to the soft pions. Another di�eren
e
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Figure 4.1: Mass distributions of the re
onstru
ted D meson de
ay 
hannels.



4.3. Correlation Analysis 57is in the way the invariant mass 
ut is implemented. The 
ut is not applied to theinvariant mass of the D�+ 
andidates themselves but rather to the mass di�eren
em(D�+)�m(D0). This di�eren
e is known with mu
h higher a

ura
y than the massitself be
ause most systemati
 e�e
ts of the re
onstru
tion 
an
el. D�+ are a

eptedif 140 MeV < m(D�+)�m(D0) < 155 MeV. The other requirements are the same asfor the D+ 
andidates, again in
luding the presen
e of a trigger pair.D Meson Mass Spe
tra.| The four-ve
tors resulting from the re
onstru
tion algorithmdes
ribed in the previous se
tion are written to disk in a format suitable for lateranalysis with the ROOT data analysis framework. TheDmeson signals are establishedby analysing their mass spe
tra.In the 
ase of D0 and D+ mesons the invariant mass is plotted in a 90 MeV window
entred at the known meson mass. Next a fun
tion des
ribing the mass distributionis �tted to the resulting histogram. This fun
tion is the sum of a ba
kground and asignal model. The ba
kground model is a linear fun
tion and the signal is a doubleGaussian with same mean. For theD�+ the mass di�eren
em(D�+)�m(D0) is plottedin the range 140 MeV < m(D�+) � m(D0) < 154 MeV. No �t is performed for them(D�+)�m(D0) mass di�eren
e. The results of this analysis are shown in �g. 4.1.In all three de
ay 
hannels a 
lear signal was established. This is not trivial in ahadron 
ollider environment. The possibility to 
olle
t su
h a large number of eventswith hadroni
 �nal states of long-lived parti
les is mostly owed to the displa
ed tra
ktrigger. But without highly eÆ
ient and stable tra
k re
onstru
tion software it wouldhave been impossible to analyse this huge dataset and extra
t the signals from thelarge 
ombinatorial ba
kground.The width of the D0 and D+ signal is not the natural width but re
e
ts the exper-imental momentum resolution. It is furthermore remarkable how well the D0 and D+masses are re
onstru
ted. With m(D0) = 1864:76MeV and m(D+) = 1868:97MeVboth are well in between one � of the PDGworld averages ofm(D0) = 1864:6�0:5MeVand m(D+) = 1869:4 � 0:5MeV1. This 
learly proves the fun
tionality of the tra
kre
onstru
tion and the a

ura
y of the dete
tor model.4.3 Correlation AnalysisCon
ept of the Analysis.| The 
orrelation analysis presented here aims to �nd 
or-relations between the mass spe
tra of 
harmed and anti-
harmed mesons. It is based1The statisti
al errors of the re
onstru
ted masses are negligible and a study of the systemati
errors was not performed sin
e we do not want to measure the D meson masses. Assigning propererrors to the mass measurements would only improve the statisti
al agreement.
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or-relation analysis. The labels inthe nine bins denote the proba-bility for a 
ombination to endup in this bin in the 
ase of zero
orrelation.on some assumptions. Most importantly the mass spe
tra are required to be sym-metri
 and the ba
kground to be 
at. Furthermore the method is only valid whenthe two mass spe
tra have the same shape. Given the shape of the spe
tra presentedin the previous se
tion this leaves us with D0- �D0 
orrelations. Similar methods 
anbe developed that allow to in
lude other possible 
orrelations. But these are more
ompli
ated and not yet well understood. To examine them all is beyond the s
ope ofthis do
ument.In order to understand the analysis method it is �rst ne
essary to introdu
e some
on
epts and notations. The mass spe
tra are divided in three regions of equal width.The 
entral region 
ontains the mass peak and is 
alled the signal region. The tworegions left and right of the signal region are 
alled the sideband regions. We nowassume that the sideband regions essentially 
ontain no signal. For the given D0 and�D0 mass spe
tra this is true to a very good approximation. We 
an now interpretthe mass spe
tra as probability density fun
tions. This means that there are de�niteprobabilities to �nd a value of m in the signal or sideband regions. With the alreadyintrodu
ed assumption of a 
at ba
kground the ba
kground probability is 
onstantover the whole mass range. We denote this probability 3 �B. Sin
e, to very good ap-proximation, there is no signal in the sidebands, B is the probability to �nd an entryin one of the sideband regions. The area in the 
entral region of the mass spe
trum is



4.3. Correlation Analysis 59larger sin
e it also 
ontains signal events. If we denote the signal probability with S,the total probability to �nd an entry in the signal region is S +B. This is illustratedin �g. 4.2. We 
an now plot the �D0 mass versus the D0 mass spe
trum. Possible 
or-relations should express themselves in the 
ount rates of the resulting two-dimensionalhistogram. The two dimensional plot is divided into nine regions of equal area as in�g. 4.3. The borderlines of the regions are at the very positions that de�ned thesignal and sideband regions of the mass spe
tra. In absen
e of any 
orrelations we 
annow 
ompute the probabilities for an entry ending up in one of the regions and hen
epredi
t the relative 
ount rates of the nine regions. For two un
orrelated events withprobabilities PA and PB the total probability of observing both is simply P = PA �PB.This yields the following probabilities for the three 
lasses of regions at hand:1. sideband-sideband regions: P1 = B22. sideband-signal regions: P2 = B(S +B)3. signal-signal region: P3 = (S +B)2Sin
e we are only interested in relative probabilities we 
an negle
t the overall normand dire
tly identify the 
ount rates with the probabilities. If we denote the numberof entries in all regions of type 1 and type 2 with N1 and N2 respe
tively, we 
an
ompute S and B. Starting fromN1 = 4 � P1 = 4 �B2 (1)N2 = 4 � P2 = 4 �B(S +B) (2)we get B = 12pN1 (3)S = N2 �N12pN1 (4)This allows us to predi
t the 
ount rate in the signal-signal bin:N3;pred = (S +B)2 = N224N1 (5)If the observed 
ount rate N3 is signi�
antly higher than this predi
tion we haveestablished eviden
e for 
orrelated D0- �D0 produ
tion. In order to quantify the signif-i
an
e we need an estimate of the error on � � N3 � N3;pred. We assume the 
ountrates to be independent and Poisson distributed. This dire
tly yields their errors
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Figure 4.4: Toy Monte Carlo Analysis for sb = 2=3 and r
 = 0:2. Theeviden
e for 
orrelation is 7.8 �.�Ni = pNi; i = 1; 2; 3. Sin
e there are no 
orrelations between the Ni the error on �is obtained through simple error propagation:�� =vuut 3Xi=1 � ���Ni�2 �Ni (6)=sN22 (4N1N2 +N22 )16N31 +N3 (7)The ratio �=�� then quanti�es the signi�
an
e of the 
orrelation.Toy Monte Carlo Study.| Before we apply the analysis method to theD0 mass spe
trawe verify its fun
tionality by 
ondu
ting a toy Monte Carlo study. It is a toy MonteCarlo study in the sense that it does neither involve the generation of physi
s eventsnor a dete
tor simulation. This is justi�ed by the fa
t that the 
orrelation analysismethod is 
ompletely ignorant of the meaning of the involved spe
tra. Thus themethod 
an be veri�ed if we produ
e two spe
tra for whi
h we have the signal toba
kground ratio and their 
orrelation under 
ontrol.This is a
hieved by the following algorithm. Using a pseudo random numbergenerator we produ
e two spe
tra, x and y. The shape of both is a 
onstant 
atba
kground plus a standard Gaussian with mean zero and varian
e one in the range[�6; 6℄. The spe
tra are produ
ed on an event by event basis. The number of entries tothe spe
tra in ea
h event follows a Poisson distribution with mean two. In ea
h event



4.3. Correlation Analysis 61the algorithm �rst de
ides how many entries of x spe
trum will be generated. Forea
h x entry the random number generator is used to de
ide whether it is a signal or aba
kground event. The signal to ba
kground ratio is 
ontrolled by one variable, sb, ina simple way. The random number generator generates a number in the interval (0; 1℄.If this number is greater than sb the entry will be a signal entry. This means thatthe signal to ba
kground ratio is (1 � sb)=sb. The ba
kground entries are generateda

ording to the 
at ba
kground distribution. The signal event distribution is thestandard Gaussian distribution. The rate of 
orrelation is 
ontrolled in very mu
hthe same way as the signal to ba
kground ratio. For ea
h signal x a random numberin (0; 1℄ is 
ompared to the 
ontrol variable r
. If the random number is less thanr
 a signal entry in y distribution will be for
ed. This is repeated until all entriesfor the x distribution in this event have been generated. Afterwards the y entries aregenerated in a similar way. However, no 
orrelated entries are 
reated for signal eventsin y. Consequently the maximum 
orrelation rate at r
 = 1 is 50%. This pro
edureintrodu
es an asymmetry between x and y. To 
ompensate for this the roles of x andy in ea
h event are swapped on a random basis by 
omparing a random number to0.5. This algorithm was implemented in C++ and run inside the ROOT framework,using the TRandom3 random number generator.By generating a large number of events in this fashion we obtain two spe
tra witharbitrarily high statisti
s. The signal to ba
kground ratio and the rate of 
orrelationare 
ompletely under 
ontrol. If we 
reate two 
orrelated spe
tra for whi
h the as-sumptions underlying our analysis method hold, we should �nd a 
lear eviden
e for
orrelated produ
tion. This is indeed the 
ase. If we produ
e 100,000 events with
sbh
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Figure 4.5: Toy Monte Carlo Analysis for sb = 1:0 and r
 = 1:0. The eviden
efor 
orrelation is 0.06 �.
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Figure 4.6: Toy Monte Carlo Analysis for sb = 2=3 and r
 = 0. The eviden
efor 
orrelation is 0.55 �.sb = 2=3 and r
 = 0:2, i.e. with a signal to ba
kground ratio of 1=2 and a 
orrela-tion rate of 10%, we obtain a 7.8 � eviden
e for 
orrelation. Figure 4.4 shows the
orresponding plots.It remains to be shown that the method does not 
reate fake eviden
e and breaksdown when one or more basi
 assumptions are violated. Also this is indeed the 
ase.Figure 4.5 shows the results for maximum 
orrelation but no signal. As expe
ted, theeviden
e for 
orrelation vanishes in this 
ase. In the 
ase of a reasonable signal toba
kground ratio with zero 
orrelation the eviden
e also vanishes, as 
an be seen in�g. 4.6. The results of a more granular s
an of the (sb,r
) parameter spa
e 
an befound in appendix D. In summary, the analysis method is suitable for establishing a
orrelation of two spe
tra as long as the underlying assumptions hold.4.4 Eviden
e for Correlated Charm Produ
tionEviden
e for Correlated D0- �D0 Produ
tion.| After we have established the analysismethod we 
an now apply it to the D0 mass spe
tra. In order to minimise possiblesour
es of errors the analysis algorithm was implemented in a C++ 
lass, allowingto use exa
tly the same implementation for the toy Monte Carlo study and dataanalysis. The analysis 
ode was run inside the ROOT framework on the 
ompresseddata produ
ed by the o�ine analysis job. Figure 4.7 shows the mass 
orrelation plot.We observe an ex
ess in the signal-signal bin of the D0- �D0 mass distribution with asigni�
an
e of 5.9 �. For the �rst time at a hadron 
ollider experiment, this 
onstitutes
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e for Correlated Charm Produ
tion 63a 
lear eviden
e of 
orrelated D0- �D0 produ
tion.Angular Distributions.| It is now most interesting to examine whether the signi�
an
eof the 
orrelation is related to the angle between the 
ight dire
tions of the two mesons.Figure 4.8 shows a plot of the azimuth angles of the meson momenta. The moststriking features are the three 
learly visible bands in the plot. The band on themain diagonal is populated by meson pairs with 
ollinear momenta, i.e. �� � 0. Thebands in the upper left and lower right of the plot 
orrespond to meson pairs with alarge separation of j��j � �. We thus observe a 
lear jet stru
ture: the meson pairsare either produ
ed 
ollinearly or ba
k to ba
k. This raises the question whether the
orrelation is equally strong in both 
ases. In order to answer this question we dividethe data sample in two subsamples, a 
ollinear sample with j��j < �=2 and a ba
kto ba
k sample with j��j > �=2. The 
orrelation analysis is then performed for bothsamples separately. The angular distribution and 
orrelation plots for the two samplesare shown in �g. 4.9. We observe a di�eren
e in the 
orrelation signi�
an
e in the two
ases. The analysis of the 
ollinear sample yields an ex
ess with 5.3 � signi�
an
e.With 2.6 � the eviden
e is mu
h weaker in the ba
k to ba
k sample. There severals
enarios that 
an lead to this result. If the produ
tion vertex of the two mesons isthe primary intera
tion point this would hint a strong 
ontribution from higher orderprodu
tion me
hanisms like 
avour ex
itation and gluon splitting. On the other handa signi�
ant displa
ement of the meson produ
tion vertex from the primary intera
tion
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Figure 4.7: �D0 mass spe
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Figure 4.8: Angular distribution ofD0 and �D0 meson momenta. A 
learjet stru
ture is visible.



64 Chapter 4. Correlation Analysispoint suggest that the meson pairs are produ
ed in the de
ays of long-lived parti
les.This leads us to examine the distribution of the proper de
ay lengths of the mesonpair produ
tion verti
es. To this end we plot Lxy versus 
os(��) of the meson mo-menta. Note that Lxy is not the distan
e of produ
tion vertex and primary intera
tionpoint. It is the proje
tion of this distan
e in the x-y plane onto ~pt, i.e.Lxy � (~xse
ondary � ~xprimary) � ~ptj~ptj (8)

) [GeV]
0

m(D

1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9

) 
[G

eV
]

0
D

m
(

1.82

1.83

1.84

1.85

1.86

1.87

1.88

1.89

1.9

)
0

(Dφ
-3 -2 -1 0 1 2 3

)0
D(φ

-3

-2

-1

0

1

2

3

) [GeV]
0

m(D

1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9

) 
[G

eV
]

0
D

m
(

1.82

1.83

1.84

1.85

1.86

1.87

1.88

1.89

1.9

)
0

(Dφ
-3 -2 -1 0 1 2 3

)0
D(φ

-3

-2

-1

0

1

2

3

Figure 4.9: Correlation and angular distribution for 
ollinear (upper plots)and ba
k to ba
k (lower plots) meson pairs.
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Figure 4.10: Lxy versus 
os(��) of the meson pairmomenta. The 
ollinear meson pairs tend to origi-nate from a vertex with large de
ay length.The plot in �g. 4.10 shows that the 
ollinear meson pairs tend to be produ
ed at largede
ay lengths. This suggests that they originate from de
ays of long-lived parti
lesrather than higher order produ
tion me
hanisms. While this is well worth furtherinvestigations these are beyond the s
ope of this thesis be
ause they require evenlarger statisti
s than are available at the time of this writing. Thus we are left withopen questions. But one question is answered beyond any doubt: the developedsoftware for 
harged parti
le tra
k re
onstru
tion is suÆ
iently a

urate, eÆ
ient andstable to allow for large s
ale analysis of the hadroni
 dataset re
orded by the CDF 2experiment.





Chapter 5Con
lusionsIn Run 2, the se
ond period of operation of the Tevatron, the CDF 2 
ollaborationhas 
olle
ted and su

essfully pro
essed a large amount of data. This is a tremendoussu

ess, owed to the substantial upgrades of the dete
tor hardware as well as to theeÆ
ien
y and stability of the re
onstru
tion software and 
omputing fa
ilities.For the �rst time at a hadron 
ollider CDF 2 has 
ommissioned a displa
ed ver-tex trigger. With this trigger alone CDF 2 has 
olle
ted � 481pb�1 of integratedluminosity. Although designed for 
olle
ting hadroni
 de
ays of B mesons, this trig-ger has provided the CDF 2 
ollaboration with a huge sample of 
harmed mesonsde
aying into fully hadroni
 �nal states. This allows to examine Charm produ
tionin hadron 
ollisions using ex
lusively re
onstru
ted 
harmed meson de
ays with veryhigh statisti
s.An eÆ
ient and stable 
harged parti
le tra
k re
onstru
tion is an essential prereq-uisite of any analysis of fully hadroni
 de
ays. Based on an extremely fast implemen-tation of a Kalman-�tter a very pure and eÆ
ient tra
king algorithm for the CDF 2sili
on dete
tor was implemented. Furthermore, the implementation of an a

urateand eÆ
ient model of the dete
tor geometry allows to �t tra
ks with arbitrary par-ti
le hypothesises at the 
orre
t momentum s
ale while maintaining high 
omputingeÆ
ien
y at the same time. All analyses using 
harged parti
le tra
ks in the CDF 2
ollaboration heavily rely on the fun
tionality implemented by this software. Thesealgorithms were improved through numerous development 
y
les and subje
ted tomany tests of their fun
tionality. Without these time 
onsuming e�orts it would havebeen impossible to extra
t the 
lear D meson signals that ultimately allowed to estab-lish eviden
e for 
orrelated D0- �D0 produ
tion for the �rst time in a hadron 
olliderenvironment.
67





Appendix ASiliMap ImplementationClass Stru
ture | The Memory Problem | Material IntegrationA.1 Class Stru
tureThe implementation of the SiliMap 
on
ept involves several 
lasses, distributed overseveral pa
kages. The 
ore fun
tionality, in
luding I/O, is implemented in the Sili-
onGeometry pa
kage[26℄. The 
ode responsible for the s
anning resides in Tra
king-UserMods[40℄ and the standard MaterialIntegrator interfa
e is implemented inTra
kingSI[41℄. The 
omplete list of 
lasses where they reside and the fun
tion-ality they provide is given in the table below1.Class Pa
kage Fun
tionalitySiliMap Sili
onGeometry main interfa
e, ASCII I/OSiliMapLayer Sili
onGeometry map 
onstituent, 
ore materialintegration algorithmSiliMapMaterial Sili
onGeometry layer 
onstituent, holds materialpropertiesStorableSiliMap Sili
onGeometry provides StorableObje
t I/OSiliMapIntegrator Tra
kingSI generi
 MaterialIntegratorinterfa
eSiliMapS
anMod Tra
kingUserMods s
anning algorithm, s
an jobsetup, plain Root tree outputThe SiliMap main interfa
e is implemented as a singleton. To avoid the imple-mentation of trivial setters not needed for the 
lient API, all 
lasses, espe
ially in I/O,are de
lared friends of the 
lasses they need to modify. We do not 
laim that the1The 
lass SiliMapDBInterfa
e is not listed here sin
e database I/O is obsolete sin
e quite awhile. The 
lass will be removed in future releases of 
dfsoft2.69



70 Appendix A. SiliMap Implementationoverall design is optimal. For example it might 
onsidered in
onsistent to implementStorableObje
t I/O in a separate 
lass and making ASCII I/O a SiliMap fun
tion-ality. This and other 
aws are owed to either te
hni
al requirements imposed by theCDF 2 software framework or simply to the development history. On
e a pea
e ofsoftware is in produ
tion it be
omes hard to make fundamental 
hanges to it. Thisis not meant to be an ex
use. It should just illustrate an all too 
ommon problem,not only in high energy physi
s: when things basi
ally work and resour
es are limited,everything is left as is. Sometimes things work not due to their design but ratherin spite of it. We hope that SiliMap is not su
h a bad 
ase, however. The 
lassstru
ture is do
umented here to help maintainers and not be
ause it represents anground-breaking design solution for the problem at hand.A.2 The Memory ProblemNaively storing the three material properties obtained by the s
an for ea
h bin inthe map as a float is not feasible. This 
an be seen from the following 
al
ulation.Assuming a binning resolution of 2 mm, an average map layer has 1000�500=500,000bins. With 30 layers and 4 bytes per float the total memory would be �170 MB. We
an not a�ord to enlarge the size of o�ine exe
utables by this amount just to storea material des
ription. Furthermore, a map this large would 
onsiderably slow downprogram startup when it is read in.The solution to this problem is threefold:� exploit dete
tor symmetries� use a fuzzy de�nition of equality� use a sophisti
ated indexing s
hemeInstead of storing three floats per bin a per-layer mapping s
heme is implemented:only for bins distin
t in their material properties these are stored. Whenever a bins
an is 
ompleted the already stored material properties in the layer a sear
hed for amat
h. The mat
hing is where the fuzzy equality 
omes in. The a

ura
y of equalityis de�ned by SiliMapMaterial::ACCURACY whi
h defaults to 1%. This means thatbins whose material properties do not deviate by more than 1% are 
onsidered equal.If a mat
h is found, a referen
e to the already stored properties de�nes the "material"of the bin. Sin
e the �-binning is 
hosen to re
e
t the dete
tor symmetry and thereare additional translational symmetries, mat
hes are very 
ommon. Thus the memory
onsumption is lowered 
onsiderably2.2One might think that this 
an be improved upon by only storing 'materials' distin
t in the maps
ope. However the gain has proven to be too small to sa
ri�
e the ability to do a parallel s
an.



A.3. Material Integration 71This, however, is not yet the end: storing the referen
es as pointers to SiliMap-Material still 
onsumes too mu
h memory. On a 32 bit system a pointer is still fourbytes, on 64 bit SGI even eight. So even if all the layers had many equal bins we stillwould end up with >57 MB on a 32 bit system and >114 MB on native 64 bit. Firstlythis is too large and se
ondly it is ar
hite
ture dependent.The best approximation of an ar
hite
ture independent type in C++ is a 
har.In most implementations it 
orresponds to one byte. Sin
e this is four times smallerthan a pointer on a 32 bit system we 
hoose it as the index type. A SiliMapLayer isthen de�ned by� a ve
tor of distin
t (in the above sense) SiliMapMaterials� a ve
tor of 
hars that index the 'materials'One 
aveat remains, however. In some layers there are more than 256 distin
t 'ma-terials'. In these 
ases one byte is not suÆ
ient to index them all. To work aroundthis two 
hars are used in these layers, whi
h requires some bit logi
 to 
ompute theindi
es (using an int would 
onsume four bytes and short is not well de�ned).Using the ma
hinery des
ribed above the runtime memory 
onsumption of SiliMapis no more than �17 MB, ar
hite
ture independent. This is a fa
tor of ten lowerthan with the naive approa
h and suÆ
iently low to use it in o�ine re
onstru
tion.Persistently stored as a StorableObje
t, i.e. with Root 
ompression, the �le sizeis only �1 MB. The time spent in reading the map on program startup is hardlynoti
eable.A.3 Material IntegrationIn general the material integration between two arbitrary points on a given traje
tory(always a helix in our 
ase) is done in two steps:1. determine all SiliMap layers traversed by the part of the traje
tory2. integrate the material in all layers by 
omputing average material propertiesSin
e the �rst step is not ne
essary for 
lients that already know about the layer theywant to integrate over (e.g. the KAL �tter) it is not implemented in SiliMap itself.The SiliMapIntegrator 
an be used for the general 
ase at the 
ost of some loss intiming performan
e.The 
ore material integration algorithm is 
ommon to all SiliMap a

ess s
enariosand is implemented in SiliMapLayer::integrate() . It works as follows. Prior to a
all of SiliMapLayer::integrate() the � and z 
oordinates of the traje
tory entry(at inner layer radius) and exit point (outer layer radius) has to be known. From this
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Figure A.1: Illustration of the possible s
enarios for the material inte-gration in one SiliMap layer. Non-trivial 
ases for even (left, blue) andodd (
entre, green) number of z bins and the trivial 
ases (right, red).The numbers indi
ate the weight given to the bins in the averaging of thematerial properties.information SiliMapLayer::integrate() will determine the bins traversed by thetraje
tory in the layer and average their material properties. In the most general 
asethe z and � bin indi
es will di�er for the entry and exit points. The other s
enarios aretrivial spe
ial 
ases (only one bin, two neighboured � bins and a row of z bins). In thenon-trivial 
ase two rows of z bins enter the averaging pro
edure. One aligned withthe entry point � bin and one with the exit point � bin. In 
ase of an odd number of zbins the two neighboured bins in the 
entre enter the average with half weight. This isillustrated in �gure A.1. After the 
ontributing bins and their weights are determinedthe average material properties are 
omputed and returned in a SiliMapMaterialstru
t. In all 
ases the path length in the layer is 
omputed a

urately { either by theSiliMapIntegrator or dire
tly by the 
lient as in the 
ase of KAL �tter. Using thepath length and material properties the 
lient 
an then modify the tra
k parametersand 
ovarian
e matrix a

ordingly. This pro
edure assumes that a traje
tory nevertraverses more than two bins in � in one SiliMap layer. Obviously, this is not truein general. The assumption allows for a better timing performan
e, however. Andit 
an be justi�ed by the following 
al
ulations. Geometri
al 
onsiderations yield thefollowing equation for the angular di�eren
e of the entry and exit points as seen fromthe origin: �� = ar
sin(r2 � �C �B=2pt)� ar
sin(r1 � �C �B=2pt) (1)Where r1(r2) is the inner(outer) radius of the map layer, �C = 0.0029979 is the
urvature 
onstant B = 1.4116 T is the magneti
 �eld strength and pt denotes the
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k transverse momentum. The assumption is thus justi�ed if this di�eren
e issmaller than the angle 
overed by two bins in a given layer. Furthermore, the problemis not severe if the material properties vary slowly in � (or not at all, as in the 
ase ofe.g. the COT inner 
ylinder). The following table lists some s
enarios. The numbersfor �� in the table are rounded results obtained from equation (1). But the ar
sin()fun
tion a
tually is linear to a good approximation near the origin.r1 [
m℄ r2 [
m℄ pt [GeV℄ # � bins allowed �� [Æ℄ �� [Æ℄20 21 0.25 628 1.0 0.540 41 0.25 1000 0.72 0.520 28 1.0 628 1.0 1.020 28 0.5 628 1.0 2.020 28 0.25 628 1.0 4.0The only 
ases where the two bin assumption does not hold are the last two. Note,however, that these assume a layer of 8 
m thi
kness! All SiliMap layers with rapidly
hanging material properties are thinner than 1 
m. For these the assumption holdseven for very low momentum tra
ks.
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Appendix BComparison of Passive MaterialDes
riptionsThe Di�erent Des
riptions of the Passive Material: Introdu
tion; The Perfe
t World {Using GEANT; The Independent Simpli�ed Material Model; The Detailed Stru
turedSubset | Comparison on Single Muon Monte Carlo | Comparison on J= Data |Timing Performan
eB.1 The Di�erent Des
riptions of the Passive Ma-terialIntrodu
tion.| In this se
tion we will present the various 
ombinations of tra
k �t-ters and material des
riptions. Although only two of them are 
urrently used inphysi
s analysises it will be useful to have an overall pi
ture. One reason is that thisni
ely illustrates some aspe
ts of how long-lived software proje
ts evolve. But mostimportantly it justi�es why the two 
ombinations in use are the ones re
ommendedfor analysis. The SiliMap des
ription of the passive material was already des
ribed in
hapter 3. The other available des
riptions will be introdu
ed in the following se
tions,espe
ially emphasising their 
onsisten
y and maintainability.The Perfe
t World { Using GEANT.| One major a
hievement of the CDF 2 geometrydes
ription is that it allows to use the same geometry in simulation and re
onstru
tion.While the main reason for this design was to ensure 
onsisten
y, it also allows the usageof simulation software in re
onstru
tion. This dire
tly leads to the 'perfe
t world'solution of the material integration problem: using GEANT to �nd interse
tions andsimulate the material e�e
ts. This solution is implemented in the G3X pa
kage[?℄. It
an not be used by the KAL �tter in its 
urrent implementation.75



76 Appendix B. Comparison of Passive Material Des
riptionsThis approa
h has the unquestionable advantage of the highest available a

ura
y.Unfortunately it has the drawba
k that GEANT is 
omparably slow { GEANT's tim-ing performan
e is to poor to employ it under 
ir
umstan
es with high 
ombinatori
s1.Nevertheless, the G3X pa
kage provides a great tool for the analysis of presele
ted datasets. Moreover, it 
onstitutes an indispensable ingredient to the SiliMap solution.The Independent Simpli�ed Material Model (SI Simple).| A 
ompletely di�erent ap-proa
h is to ignore the full-featured geometry des
ription and implement a simplerone, spe
ially tailored to simplify the path �nding problem. This solution is imple-mented by the SimpleSili
onIntegrator in the Tra
kingSI pa
kage[41℄. It is onlyused by the SI �tter. Histori
ally a 
onsistent geometry framework did not yet existwhen this solution was implemented. So, stri
tly speaking, it was not ignored. Bethis as it may, the SimpleSili
onIntegrator is still used by some �tter 
lients andtra
king algorithms, despite the fa
t that a mu
h more detailed geometry is availablesin
e quite a while.The major drawba
k of this approa
h is the likely divergen
e of the detailed and thesimpli�ed geometry des
ription. And in fa
t both meanwhile des
ribe rather di�erentdete
tors. One should keep in mind that this solution always was intended to betemporary. Until the rise of G3X it was the only one available for the SI �tter.The Detailed Stru
tured Subset (KAL Proxy).| The divergen
e problem is partiallyavoided by using a subset of the dete
tor 
omponents 
ontained in the detailed ge-ometry des
ription and superimpose a stru
ture whi
h fa
ilitates the path �nding.Sin
e the KAL �tter relies on su
h a stru
ture, this was the only option availablefor this �tter prior to SiliMap. The SI �tter does not use it. The sele
tion 
riterionfor the subset is that the shape and orientation of the 
omponent 
an be handledanalyti
ally. I.e. it is possible to analyti
ally 
ompute interse
tions and path lengthsfor heli
es. This boils down to 
ylinders and box shapes parallel to the z-axis. Thesuperimposed stru
ture arranges the 
omponents in layers (r), wedges (�) and ranges(z) whi
h allows for a very eÆ
ient lookup of traversed 
omponents. An in
arnation ofthis 
on
ept is the KalDete
tor proxy used by the tra
king algorithms implementedin the Tra
kingKal pa
kage and in tra
k re�tting[31℄. Sin
e the subset 
overs themajority of dete
tor 
omponents this solution performs pretty well.However, it also has its drawba
ks: the sele
tion 
riterion is somewhat arbitrary.It might reje
t relevant dete
tor 
omponents simply be
ause they 
an not be handledanalyti
ally. In addition, the interfa
e of the detailed geometry was not designed tosupport the initialisation of proxies. This raises maintainability problems, sin
e theinitialisation pro
edure has to rely on some assumptions on the geometry stru
ture1It should be stressed that GEANT is not slow in the �eld of simulation. It simply dominates theCPU 
onsumption when used in the 
ontext of tra
k �tting.



B.2. Comparison on Single Muon Monte Carlo 77and naming 
onventions2. In 
ase of 
on
i
ts manual intervention is required.B.2 Comparison on Single Muon Monte CarloThe main purpose of the MC validation is to verify the 
onsisten
y of SiliMap and thefull dete
tor des
ription. Thus single-� MC samples are suÆ
ient for this purpose.Several samples were generated for this validation. The results presented here are allobtained from a 10,000 event single-�� sample with p 2 [0.5, 2.0℄ GeV, j�j < 1. Thesample was generated with 
dfSim from 
dfsoft2 5.3.1 using the FakeEvent generator.The 'phantom layers'3 were o� for simulation , SiliMap s
anning and G3XIntegratorre�tting. This a
tually does not matter in a 
onsisten
y 
he
k. The settings have to bethe same whenever GEANT is invoked, however. Standard Produ
tionExe was run fortra
k re
onstru
tion. The evaluation ntuple was 
reated by running SiFitterTestModfrom the Tra
kingUserMods pa
kage. This module 
an be 
on�gured to employ any ofthe available �tter/material integrator 
on�gurations via the Tra
kRefitter interfa
e.The truth informations was retrieved from the OBSP banks. It is ne
essary to lookat only one 
harge to in order make the systemati
 e�e
ts in 
urvature re
onstru
tionvisible. The results do not look di�erent for the 
orresponding �+ sample. Only OItra
ks entered the re�t ntuple. The reason for only using OI tra
ks is that the SI �tteris needed for G3XIntegrator re�tting. This �tter was never validated for re�ttingsili
on stand-alone or IO tra
ks and it a
tually has some problems, espe
ially in theforward regions. Sin
e this 
omparison is only 
on
erned with material integratorsonly tra
ks for whi
h both �tters are known to work properly are used.The parameter pulls for �ve p2t bins in the region pt 2 [0.5, 2.0℄ GeV are shown in�gure B.1. To allow for visual 
omparison all plots have the same range on the pullaxis. On this s
ale only the 
urvature pull shows visible di�eren
es between the �tter
on�gurations. The 
urvature pull 
learly shows that the KAL/Proxy 
on�gurationunderestimates the dete
tor material. The dE=dx estimated by this 
on�guration istoo low whi
h leads to a deviation of the 
urvature estimate from the OBSP truth.As expe
ted, this deviation grows with falling momentum.On the other hand the KAL/SiliMap 
on�guration performs as good as the G3X-Integrator. This means it shows 
lose to perfe
t 
onsisten
y with the full featured2This is not true for a
tive dete
tor 
omponents: CdfHalfLadderSet provides a well de�nedinterfa
e to them.3The phantom layers are material layers introdu
ed into the geometry des
ription in order toget the right momentum s
ale. They are tuned to the J= mass. First there was only one su
hlayer pla
ed between the ISL and the COT inner wall. At this time it 
ould not be asso
iated withreal dete
tor 
omponents. Later the des
ription was re�ned and now there are several su
h layers.Re
ent investigations allowed to asso
iate these layers with real dete
tor 
omponents. Thus the term'phantom layer' is a
tually no longer appropriate.
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Figure B.1: Tra
k parameter pulls of the various �tter/material integrator 
on�gu-rations. For ea
h p2t bin a Gaussian was �tted to the pull distribution as illustratedin the lower right plot. The histograms show the Gaussian means as obtained fromthe �ts.geometry sin
e G3XIntegrator integrates exa
tly the same material that was used forsimulation in exa
tly the same way, i.e. using GEANT.The other tra
k parameters are only slightly a�e
ted by the �tter 
on�guration.This 
an be seen in more detail in the zoomed views shown in �gure B.2.
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Figure B.2: Pulls of the less a�e
ted tra
k parameters 
ot(�), z0, d0 and �0.They were obtained in the same way as in �gure B.1.
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Figure B.3: J= 
andidate mass distribution and �ts used to determinethe peak width. In the left plot a double Gaussian with 
ommon mean pluslinear ba
kground was �tted to the distribution. The result determinesthe range for the single Gaussian �t in the right hand side plot.B.3 Comparison on J= DataThe 
ru
ial test is the validation on data. SiliMap has to perform at least as good asthe 
urrently re
ommended tuned KAL/Proxy 
on�guration[33℄ to be an alternative.That it a
tually performs better will be shown below.The �rst 10% of the jpmm0
 dataset were used for this validation. Statisti
s arethus not as high as in [33℄ but suÆ
ient for this purpose. The J= 
andidates wereformed from two oppositely 
harged muons retrieved from CdfMuonView::defMuons() .The tra
ks were required to be OI tra
ks with j�j < 1 and pt > 1:45 GeV. At least 20axial 15 stereo COT hits and 2 axial sili
on hits were required. The tra
ks were re-�ttedwith the various �tter/material integrator 
on�gurations using the Tra
kRefitter in-terfa
e. In all 
ases the COT 
ovarian
e s
aling the COT 
urvature 
orre
tion andthe magneti
 �eld s
ale from [33℄ were applied. The KAL/Proxy 
on�guration wasused in two di�erent setups: on
e with the default 'phantom layers' of 
dfsoft2 5.3.1and on
e withe the 'phantom layer' tunings from [33℄ (KAL/6905). For SI/G3X andSiliMap the default 5.3.1 geometry settings were applied.The tra
ks were �tted to a vertex using the PartFitVertex interfa
e to CTVMFT.The resulting mass distribution is shown in �gure B.3.The mass pulls shown in the left plot of �gure B.4 were 
omputed using the PDGJ= mass and the errors from the CTVMFT �t using formula 1.pullm = (m�mPDG + 0:00082GeV)=�m (1)
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Figure B.4: Pulls (left) and widths (right) of the re
onstru
ted J= massfor all �tter/material integrator 
on�gurations.The 0.00082 GeV are added to a

ount for the radiative tail in the mass Distribution.This is the same pro
edure as used in [42℄[43℄[33℄. The KAL/SiliMap 
on�gurationperforms best 
on
erning the pull. That is it has the smallest slope in the pull vs. p2tdistribution and the overall pull is 
loser to zero than in all the other 
on�gurations.While the advantage over the KAL/6905 
on�guration is only small, the KAL/SiliMap
on�guration does not require spe
ial geometry tuning.B.4 Timing Performan
eSin
e the aim was to provide an a

urate and fast material integration the �nal testis a 
omparison of the timing performan
e of the available �tter/material integrator
on�gurations. Figure B.5 shows a 
omparison of the time per tra
k �t of all available
on�gurations4. As expe
ted, the G3XIntegrator is the slowest of them all. It isalso the broadest distribution be
ause the time spent in the GEANT stepping heavilydepends in the number of di�erent volumes traversed by the tra
k. In the full featureddetailed geometry des
ription this number shows a large variation.It was 
lear from the start that G3XIntegrator 
an never beat the others 
on-
erning speed. Figure B.6 provides a 
loser look at the faster 
ombinations. This notonly illustrates the di�eren
e in speed between the material integration but also thedi�eren
es between �tters. The KAL �tter is more than a fa
tor of two faster than theSI �tter5, as 
an be seen from the 
omparison of the two for the SiliMap 
ase. Part of4The CPU type a
tually does not matter. It just sets the absolute time s
ale.5By default the SI �tter is 
ompiled with maximum optimisation. This was turned o� for this



B.4. Timing Performan
e 81this might be due the abstra
t MaterialIntegrator interfa
e that does not allow touse layer information available in the �tter (see se
tion A.3). Be this as it may { theKAL �tter is the one re
ommended by the physi
s groups for analysis and thus themost important 
omparison is the one between KAL/Proxy and KAL/SiliMap. TheKAL/SiliMap 
on�guration is�25% slower than the KAL/Proxy 
on�guration. Giventhe mu
h more a

urate and 
onsistent material des
ription provided by SiliMap thisis hardly relevant. Espe
ially when re
onstru
ting ex
lusive de
ay 
hains using vertex�ts, the per
entage of time spent in the tra
k �t does not 
hange signi�
antly whenswit
hing from KAL/Proxy to KAL/SiliMap.The good timing performan
e would even allow to use SiliMap in pattern re
og-nition. Espe
ially the KAL tra
king algorithms 
ould bene�t from that. To do sowould, however, require to re-tune numerous parameters of the pattern re
ognitionto �nd the best working point 
on
erning eÆ
ien
y and purity. But we do not knowa priori whether this will pay o�. The only advantage we are sure of is improvedmaintainability. The tra
king group agreed that this is 
urrently not worth the e�ort.
omparison to make it a fair one. The overall pi
ture does not 
hange signi�
antly with an optimisedSI �tter, however.
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Figure B.5: Time per tra
k �t for all �tter/material integrator 
on�gu-rations measured using ZMtimer on an AMD Opteron 240
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Appendix CSiliMap S
anning and DistributionThe S
anning Pro
edure | Setting up a S
an Job | SiliMap DistributionC.1 The S
anning Pro
edureThe s
anning pro
edure is implemented by the SiliMapS
anMod module. It 
onsistsof the following three major steps:1. Determination of the map layer boundaries and binning2. s
anning of all layers de�ned in step 1.3. Storing the result persistentlyIn pra
ti
e one should employ the parallelised s
anning pro
edure as do
umented inse
tion C.2. In this 
ase the results of step 1 are stored persistently and serve asinput for numerous s
an jobs whi
h run layer s
ans in parallel. The results are then
on
atenated to a valid SiliMap by an automati
ally generated s
ript.Considering the interfa
e of G3XIntegrator, the layer boundaries 
an be 
hosenarbitrarily (e.g. equidistant). However, it proves useful to 
hose them in a way suitablefor pattern re
ognition and tra
k �tting. This basi
ally means that the map binningstru
ture, while arbitrary in prin
iple, should re
e
t the organisation of the sili
ondete
tor. In R the a
tive 
omponents are organised in well de�ned layers. In theo�ine software numbering s
heme there are eight layers, numbered from 0 to 7. Layer0 is also known as L00. Layers 1-5 
onstitute the SVX II and layers 6 and 7 theISL. But the radial stru
ture of the real dete
tor is more granular. For instan
elayer 6 represents the whole 
entral part of the ISL whi
h a
tually 
onsists of threebarrels. The 
entral one has a larger average radius than the outer barrels. In addition,all barrels in the sili
on dete
tor are organised in an even number of �-wedges, the83
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Figure C.1: R-�-view of half ladders and the layer boundaries as deter-mined by SiliMapS
anMod. The bla
k re
tangles represent half laddersand the red 
ir
les 
orrespond to the inner boundaries of the layers. Theright hand side shows a zoomed view of L00 and the �rst SVX II layer.Note that the thi
kness of the SVX II ladders is derived from the hybridsand not the sili
on sensors.odd wedges having a di�erent average radius then the even ones in the same layer1.Tra
k �tters obviously require sili
on hit information. In order to improve the timingperforman
e of the material integration the information provided by the hits shouldnot be ignored. Hits know about the half ladder they belong to and 
onsequentlyabout the layer and the �-wedge. What is needed then is an unambiguous mappingof half ladders to material map layers.The SiliMapS
anMod::
reateLayerSpe
s() method guarantees this unique map-ping: using the information provided by CdfHalfLadderSet the minimum and max-imum radius of ea
h half ladder is 
omputed. Next it is 
he
ked whether this pair ofboundaries already o

urred. Equality is 
he
ked using the �nite a

ura
y from thesymbol SILIMAPSCAN RANGE EPSILON whi
h is de�ned in SiliMapS
anMod.hh. Afterremoving boundary overlaps in the resulting set of layers and adding a layer 
orre-sponding to the port 
ard region the method returns. What remains to be done is�lling the gaps between the layers derived from the half ladders. This is done in theSiliMapS
anMod::prepareS
an() method. Small gaps are �lled by stret
hing thelayer boundaries. Smallness is de�ned by the symbol SILIMAPSCAN RANGE FILLGAP.The remaining larger gaps are handled by introdu
ing one map layer for ea
h of them.This 
on
ludes the dynami
 spe
i�
ation of layer boundaries. There are two spe
ial1Whether the odd or even wedges have larger radii depends on the layer.



C.1. The S
anning Pro
edure 85layers not de�ned by this pro
edure: the inner and outermost map layers, namely thebeampipe and the COT inner 
ylinder. They are not supposed to be s
anned usingG3XIntegrator be
ause they both 
an be represented by one-bin layers with materialproperties known from the 
orresponding geometry obje
ts. They are anyway addedto the layer spe
i�
ation list but immediately 
agged as already s
anned. Figure C.1illustrates the results of the layer determination pro
edure.To 
ompletely de�ne a map layer it is ne
essary to spe
ify the binning in � and z.This is done in the method SiliMapS
anMod::s
anLayer() . The binning resolution
an be 
on�gured via talk-to. A resolution of �2 mm has proven to be good 
hoi
e.Given a z 
overage of -100 
m to 100 
m, this leads to 999 z-bins in all layers2.The same resolution is desired in r-�. This yields a di�erent number of �-bins inea
h layer. Additional 
onstraints on the number �-bins were introdu
ed for variousreasons: validation has shown that it is ne
essary to in
rease the r-� resolution in theinner layers be
ause the deviation from a perfe
tly 
ylindri
al geometry has a largerimpa
t at small radii. Thus the minimum number of �-bins was 
hosen to be 120. Onthe other hand, a lower resolution is a�ordable in the outer region toward the COTinner 
ylinder. To save s
anning time and memory no more than 1000 �-bins are2The odd number ensures that there is always a bin in the 
entre of the dete
tor whi
h was requiredby an early implementation of the MaterialIntegrator interfa
e to SiliMap. This requirement wasmeanwhile dropped, allowing future maps to have a di�erent binning.
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Figure C.2: A map bin of size 2mm is divided in 16 sub-bins by thes
anning pro
edure. The red blobs mark the positions where the GEANTs
ans are performed. As indi
ated by the dashed areas on the right, theremight be large di�eren
es between the material properties in the sub-bins.
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anning and Distributionallowed. Finally, the number of �-bins is 
hosen to be a multiple of four to a

ount forthe dete
tor's symmetry. This impli
itly saves memory, as explained in se
tion A.2.After a map layer is fully spe
i�ed, the method SiliMapS
anMod::s
anBin()is invoked for ea
h bin in the layer. This method determines the average materialproperties in the bin using the G3XIntegrator. In general the s
anning resolution ishigher than the binning resolution. By default it is 0.5 mm for a binning resolutionof 2 mm. This results in 16 GEANT s
ans for ea
h bin whi
h have to be averagedproperly. This is illustrated in �gure C.2.For ea
h sub-bin a GEANT s
an is performed by G3XIntegrator::integrate()using a high energeti
 ��. This method returns a list of materials, ea
h providing in-formation about the 
onstants CdE=dx, I0 andX0 and the path length l of the traje
toryin the material. Thus an averaging pro
edure is ne
essary also for the determinationof the average sub-bin properties. Both averaging pro
edures are not trivial. Onehas to keep in mind that we are �nally interested in the average integrated radiationlength and energy loss. Consequently we have to integrate these quantities and notthe material properties themselves. An arithmeti
 or weighted mean is not the 
or-re
t 
hoi
e for all material properties. The 
orre
t formulae for the mean values in asub-bins are given below. They are derived from the path length-weighted mean of aparti
le's energy loss and integrated radiation length.< CdE=dx > = 1Pni=1 li � nXi=1 li � CdE=dx;i (1)< I0 > = exp 1Pni=1 li� < CdE=dx > � nXi=1 li �CdE=dx;i � ln (I0;i)! (2)< X0 > = Pni=1 liPni=1 li=X0;i (3)The equations for the averaging of the sub-bin results are easily obtained from (1),(2)and (3) for li = lj 8 i; j; i.e. by going from a path length-weighted mean to a simplearithmeti
 mean:< CdE=dx >tot = 1n � nXi=1 CdE=dx;i (4)< I0 >tot = exp 1n� < CdE=dx > � nXi=1 CdE=dx;i � ln (I0;i)! (5)< X0 >tot = nPni=1 li=X0;i (6)After all bins in one layer are s
anned, the 
orresponding instan
e of SiliMapLayerbe
omes valid. It is either added to the SiliMap or stored persistently in 
ase of parallel
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an Job 87s
an jobs.C.2 Setting up a S
an JobTo 
reate a new SiliMap one needs a work release with at least the Tra
kingUserModspa
kage. If 
hanges to the geometry des
ription of the base release are required one alsoneeds to add the 
orresponding Sili
onGeometry pa
kage. It is then re
ommendedto set the environment variable SILIMAPSCAN=yes to avoid building unneeded obje
t�les and binaries. The s
anner exe
utable is then built by invoking 'gmake nobinTra
kingUserMods.tbin'.The next step is to 
reate the s
an job tar ball and some helper s
ripts. This iseasily done by laun
hing the siliMapS
an exe
utable with the t
l �le provided byTra
kingUserMods pa
kage:./bin/$SRT SUBDIR/siliMapS
an n./Tra
kingUserMods/test/silimap 
af job.t
lThis 
reates a tar ball for submission to CAF, a dire
tory where the map will�nally be assembled and a s
ript that will submit the s
an jobs to CAF. Althoughthe environment driven defaults should be alright in most 
ases, one might want toreview the 
af submit s
an s
ript before exe
uting it.In 
ase the user has a

ess to 
omputing resour
es without a CAF-like interfa
e she
an also 
reate example job submission s
ripts suitable to run the s
ans on a 
lusterwith the PBS bat
h system. Four t
l-swit
hes need to be set properly to that end:� CreatePBSJobFiles set t� PBSQueue: a queue with suÆ
ient CPU resour
es (�4h for 8 jobs)� PBSInputDir: has to be seen by nodes, job tar ball has to go here� PBSOutputDir: has to be seen by nodes, results go hereThe PBS job s
ripts are 
alled pbs submit s
an and silimap s
an pbs. After 
opy-ing the job tar ball to the dire
tory spe
i�ed with the PBSInputDir swit
h, one simplylaun
hes the pbs submit s
an s
ript to trigger the s
an. It is impossible to supportall bat
h systems on the market in this way. But it should not be too hard to writejob s
ripts for other systems based on the PBS examples.After the s
an jobs �nished su

essfully all that remains to be done is to 
opythe output tar balls to the silimap 
onstru
tion site dire
tory, 
hange to thatdire
tory and �nally exe
ute the assemble map s
ript. This will 
on
atenate thelayer s
ans to form a valid SiliMap in ASCII format and 
onvert it to the other two
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anning and Distributionsupported formats, namely StorableObje
t and plain Root tree format. Note thatthe assemble map s
ripts needs the s
an exe
utable for 
onversion and expe
ts it at../bin/$SRT SUBDIR/siliMapS
an.C.3 SiliMap DistributionThe SiliMap is distributed via the silimap UPS produ
t that gets frozen with a given
dfsoft2 release. This ensures the 
orresponden
e of the dete
tor des
ription in the Si-li
onGeometry pa
kage and the SiliMap 
ontent. However, the SiliMap is te
hni
allyindependent of Sili
onGeometry after the s
an was performed. This makes it possibleto use a map derived from a more re
ent, improved dete
tor des
ription while sti
kingto the same release 
on
erning the re
onstru
tion 
ode. This is as simple as doing'setup silimap <new version>' before laun
hing an exe
utable. Besides a README �le,a valid silimap produ
t 
ontains the following dire
tories:� as
ii/ { 
ontaining the map in 
ompresses plain text format� storable/ { 
ontaining the map in StorableObje
t format� t
l/ { 
ontaining the t
l �les use to produ
e the map� tree/ { 
ontaining the map in Root tree format� ups/ { 
ontaining the table �leThe dire
tories again reside below silimap/<version>/NULL, denoting the produ
tname, the version and the 
avour of the produ
t, respe
tively. The <version> shouldre
e
t the 
dfsoft2 release that was used to 
reate the silimap. E.g. when release 5.3.1was used the version would be v5 3 1.The �rst release the shipped with silimap in
luded was integration release 
dfsoft25.3.1int1. In 
ase you want to use SiliMap with older releases, it is strongly re
om-mended you ask the lo
al CDF software administrator to install the silimap UPDprodu
t3. The SiliMap UPD produ
t is the only re
ommended way of distributingSiliMap.On
e the silimap produ
t is installed SiliMap is made available for o�ine analysisby simply doing 'setup silimap<new version>'. For releases that ship with the silimapdependen
y this is already triggered by the 
orresponding 'setup 
dfsoft2 <version>'.
3If you do not know who your lo
al CDF software administrator is, it is probably you.
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